• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Letters and Science, University of Wisconsin–Madison
    • Department of Computer Sciences, UW-Madison
    • CS Technical Reports
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Letters and Science, University of Wisconsin–Madison
    • Department of Computer Sciences, UW-Madison
    • CS Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Learnability of Dynamic Bayesian Networks from Time Series Microarray Data

    Thumbnail
    File(s)
    TR1514.pdf (1.912Mb)
    Date
    2004
    Author
    Page, David
    Ong, Irene M.
    Publisher
    University of Wisconsin-Madison Department of Computer Sciences
    Metadata
    Show full item record
    Abstract
    Dynamic Bayesian networks (DBNs) are becoming widely used to learn gene regulatory networks from time series microarray data. Careful experimental design is required for data generation, because of the high cost of running each microarray experiment. This paper presents a theoretical analysis of learning DBNs without hidden variables from time series data. The analysis reveals, among other lessons, that under a reasonable set of assumptions a fixed budget is better spent on many short time series than on a few long time series. Keywords: dynamic Bayesian networks, gene expression microarrays, gene regulatory networks, PAC-learnability, time series data
    Permanent Link
    http://digital.library.wisc.edu/1793/60416
    Citation
    TR1514
    Part of
    • CS Technical Reports

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Contact Us | Send Feedback