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Abstract:  The urban forest makes up an integral portion of the landcover of urban areas. 

Currently 80% of the population in the United States lives in urban areas. Understanding 

landcovers within urban areas and specifically in this study the urban forest is important 

to a healthy living environment. The urban tree canopy (UTC) provides one way to assess 

the urban forest. There are multiple methods used to map the UTC with different levels of 

accuracy. Two approaches to estimate UTC include analysis of remote sensing data or 

aerial imagery with computer-based systems using artificial intelligence (AI) and human 

based interpretations using human intelligence (HI). This study compared these two 

methods (AI and HI). The AI and HI classifications for UTC did not differ significantly 

(p=0.723) for Dane county, Wisconsin where the AI method was trained. These two 

methods had a significant difference (p<0.001) in mean UTC overall for the state of 

Wisconsin. Thus, outside the training area the AI had a mean 26.0% UTC that produced a 

lower UTC estimate (5.5% UTC) than the HI (31.5% UTC). The change in UTC between 

2013 and 2018 in 404 Wisconsin communities was also done with the HI system. There 

was a significant increase (p<0.000) in tree canopy from 2013 to 2018, approximately 

1.7% from 31.6% to 33.3%. The HI UTC estimates were evaluated for agreement 

between two human assessors in each community estimate. There was over 90% 

accuracy for UTC agreement for both 2013 and 2018.  
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Chapter 1 

Premise of Study 

 

The premise of this study is to understand different assessment methods to 

quantify urban tree canopy (UTC) using aerial imagery. A pilot study between two 

communities using artificial intelligence (AI)  and human intelligence (HI) showed a 

difference in assessed UTC in locations beyond the AI training location. Therefore, we 

created a comparison between both methods for communities within and outside of the 

training area. Thus, we tested if differences in AI and HI occur with locations outside the 

training area and how the two systems compare within the training location. This study 

also investigated change in tree canopy between 2013 and 2018. A human assessor 

accuracy validation of the HI system also occurred as a validation of the HI system.  

 This thesis is comprised of three additional chapters. Chapter 2 provides a review 

of relevant UTC literature. Chapter 3 presents the results of this study, testing differences 

between the AI and HI systems. This chapter is developed in a format for submission for 

peer-review. Chapter 4 summarizes our findings from this study. Appendix A includes a 

table with studies on AI and HI and UTC comparisons. Appendix B shows the protocols 

used to create random point sampling maps using ArcMap 10.8.1 as well as template for 

comparing two assessorsô classifications.  Appendix C provides details on land 

classifications for the HI method as compared against the AI system. 

We created an assessment of UTC on landcover maps for the state of Wisconsin 

(Figure 1-1). We expected to find that the HI is more accurate in mapping urban tree 

canopy than AI. We also wanted to see if there was validation in the training location of 
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the AI method by testing for differences for communities throughout the state. Our 

assessments also mapped UTC in 2013 and 2018 to study whether there was a change. To 

decide whether human assessors categorized land cover appropriately, we did an 

accuracy assessment of 10% of the random sample points. This research will aid in 

decision-making about assessment methods used for UTC.  

 

Figure 1-1. Map of Wisconsin with locations where urban tree canopy was sampled 

compared to non-sampled locations. 
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Chapter 2 

Literature Review: Approaches and Importance of Quantifying the Urban Forest 

 

1. Introduction 

 Managing the urban forest ideally occurs with accurate urban forest estimates 

(Morgenroth & Östberg, 2017). This allows city planners, land managers, and urban 

foresters in communities throughout the world to understand what they have and reach 

goals through the plans they implement (Miller et al., 2015). A healthy urban forest can 

provide social, environmental, and economic benefits that exceed the costs to maintain 

trees (Duinker et al., 2015; Vogt et al., 2015). Data to quantify the urban forest can be 

collected through on-the-ground tree inventories or through remotely sensed information 

(Figure 2-1). 

The use of remote sensing information is one approach to quantity and estimate 

the urban forest and its status of change over time (e.g., increase, decrease, constant) how 

it grows, declines, or remains the same. Quantifying a tree population through an Urban 

Tree Canopy (UTC) assessment is a common way to determine how much of an area is 

covered by trees (Figure 2-1). Aerial imagery and mapping software can be used to 

estimate different land covers including tree canopy throughout urbanized areas 

(Blackman et al., 2020). Aerial imagery and boundary data can be used to calculate UTC 

in mapping software such as ArcGIS (McGee et al., 2012). The UTC changes over time. 

Tree planting, natural regeneration and tree growth increase UTC, while factors such as 

development, pests, pollution, and storms tend to negatively impact UTC (Nowak, 2020). 

A UTC analyses can aid in a better understanding of UTC dynamics and  
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development of effective management strategies, such as setting canopy coverage goals 

(Hermansen-Baez, 2019). A UTC assessment can also help estimate where urban tree 

populations exist and develop and test models to economically maximize ecosystem 

services (e.g., reduce stormwater runoff, carbon sequestration, decrease air pollution) and 

provide social benefits (e.g., stress reduction, improved health, decreased crime) for 

urban populations (Turner-Skoff, 2019). 

Developing healthier communities by incorporating nature such as urban green 

spaces is important for people in urban locales. Throughout the world, approximately 

50% of the people live in urban locations (United Nations, 2018). In the United States 

alone, over 80% of population live in areas that are considered urban and these numbers 

continue to steadily grow (Dolan, 2015). Urban areas are defined geographically and by 

population (Miller et al., 2015). For example, in the United States a definition for urban 

locales has historically classified these locations as places with 50,000 people or more, or 

places with 2,500 people or more which are located outside of identified urbanized areas 

(Ratcliffe, 2016). A recent proposal defines urban areas as ña minimum threshold of 

4,000 housing units or 10,000 persons instead of 2,500 personsò (Federal Register, 2021). 

Regardless of definition, trees in urbanized areas provide benefits for human health, the 

Figure 2-1. Imagery comparison with the US Tree Map showing an aerial image (a) and the 

mapped system (b). Adapted from Earth Define 2021 

(a) (b) 
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economy, and the environment, therefore it is important to find ways to reliably estimate 

UTC. Thus, UTC measured via on-the-ground assessments, aerial photography, or 

through mapping technologies are a means to an urban forest benefit end (King & Locke, 

2013). This chapter discusses why UTC is important, factors that affect UTC, and lastly 

methods to quantify the UTC.  

 

2. Urban Forest Benefits 

 Trees provide many benefits for people and the environment (Figure 2-2). 

Benefits vary by locale, tree species, number of trees, tree size, tree condition, and 

underlying site locations (Moody et al., 2021, Song et al., 2018). The urban forest can 

decrease air pollution by removing particulate matter, for example in Atlanta, Georgia, 

USA trees remove 64.5 tons of airborne particulate matter annually which translates to 

$9.2 million value with avoided health costs (Nowak et al., 2013). This can lower risks of 

respiratory ailments such as asthma (Ulmer, 2016). In the United States urban trees 

remove approximately 17 million tons of air pollution annually with an estimated $7 

billion value (Nowak, 2014). Trees can reduce noise pollution and shade surfaces (Roy et 

al., 2012). Shade provided by trees moderate ambient temperature, resulting in reductions 

in heating and cooling costs. This also allows for energy conservation and a reduction in 

heating and cooling costs. The urban forests in the United States reduce energy costs by 

approximately $7.8 billion per year (Nowak et al., 2017). Trees also provide habitat for 

pollinators and wildlife, which can be more challenging to estimate a monetary benefit 

(Rhodes et al., 2006). Trees can make cities more desirable and create a more 

comfortable living space (Payton et al., 2007). Urban forests also provide more recreation 



 

- 6 - 

opportunities, and these can lead to decreased psychological distress and resulting 

increased mental wellbeing (Ulmer et al., 2016). Trees can also increase property values 

due to peoplesô willingness to pay for aesthetically pleasing homes (Payton et al., 2007). 

Some studies show that tree canopy decreases crime rates partially through 

neighborhoods that look like they are cared for (Troy et al., 2012). 

 

3. Describing Urban Tree Canopy 

Aerial and on-the-ground assessments are common tools used to estimate UTC. 

An aerial map of the urban forest may provide an easy to view depiction of UTC, where 

it is located, and a means to see its city-wide distribution (Figure 2-1). This approach 

requires aircraft or satellites to collect the images and advanced skills to evaluate these. 

On the ground inventories allow for assessments of important information such as tree 

Figure 2-2. Infographic on the benefits that urban trees provide. Adapted from The Nature Conservancy 

2019 
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species, vigor, and hazard status that may be impossible to obtain with aerial imagery 

(Sreetheran et al., 2011); however, there are limitations to this type of assessment system 

such as high staffing requirements and funding (McGee et al., 2012). On the ground 

assessments may also be limited to publicly owned trees, while aerial imagery offers a 

bird-eye view of all trees including those on private property (McGee et al., 2012). 

Urban tree canopy estimation by HI has been employed for many years with more 

recent application of human developed algorithms and machine learned estimates through 

an AI approach (USDA-FS, 2019; Walton, 2008; Erker, 2019; Wang, 2021). Therefore, it 

is important to decide which measurement approach is most appropriate based on the 

circumstances such as time and funding (King & Locke, 2013). Studies of AI and HI 

UTC analyses have different levels of reliability, both methods are often between 75-90% 

or more accurate (Appendix A). However, AI estimates are often less accurate compared 

to HI for landcover over larger land area (Walton, 2008). Human interpretation is often 

80-90% accurate, or higher. While AI  interpretation is often between 75-85% accurate 

(Ellis & Matthews, 2019; Erker, 2019). Regardless of approach, these assessments can 

provide local governments information to support appropriate urban forest management 

& planning (Hostetler et al., 2012). 

 

3.1 Using Computer Technologies to Describe Urban Tree Canopy 

 A Geographic Information System (GIS) is a method used to map locations and 

analyze features such as UTC derived from aerial imagery (Hostetler et al. 2013). A GIS 

assessment of landcover can help urban foresters to plan tree preservation and planting to 

increase the UTC (Pauleit & Duhme, 2000). As technology becomes more advanced, 
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products such as ArcMap, Google Earth, MapGuide, QGIS, and R statistical packages are 

useful for mapping, inventorying, and analysis of trees in one database (Tasoulas et al., 

2013). Not only is a GIS useful for inventorying, but it can also help city planners and 

foresters understand the change in landcover, especially green space and trees, in 

communities (Nowak & Greenfield, 2020). 

A GIS relies on spatial data. For example, high resolution imagery can be 

acquired from satellites which include IKONOS and Quickbird sources and aerial images 

using various fixed-winged aircraft (Parmehr et al., 2016; Toutin et al., 2002). The spatial 

data is used to estimate different landcover types using random point sampling on aerial 

imagery. Points are randomly placed throughout a map at a specified distance and then 

classified by landcover type with leaf-on imagery (Figure 2-3). This can be done 

manually on paper or on software. It is also 

important to have a quality control procedure 

such as another assessor cross referencing 

10% of the randomly selected land cover 

points to see if landcover designations are 

aligned (McGee et al., 2012). Remote 

sensing data may not be as accurate as 

ground-based inventorying, but it can 

provide estimates of the urban forests for 

government, land managers and other 

stakeholders more easily than ground-based 

data (McGee et al., 2012). Ultimately, any 
Figure 2-3. ArcMap Image of Eden, WI 2013 

aerial imagery with random point overlay  
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UTC analysis can help urban foresters measure and evaluate against reaching a canopy 

target for their communitiesô needs. 

 

 3.2 Describing Urban Tree Canopy with Artificial Intelligence 

 An AI is when computing systems are taught to mimic HI through data 

aggregation and algorithms and therefore perform tasks-based on information provided 

(Helm et al., 2020). As technology performance becomes more advanced, the ability to 

use AI for tasks such as mapping land cover, specifically UTC, has become more 

common place (de Lima Araujo et al., 2021) Computer-based estimation methods use 

human developed algorithms to train a computer to calculate UTC within a location 

(Azeez et al 2019). Programs such as ArcMap or i-Tree Canopy may be used to classify 

UTC on aerial or satellite imagery (Erker et al., 2019). Segmentation and computation of 

attributes allows the computer to analyze and categorize landcover specifically urban 

trees (Puissant et al., 2014). 

 A software analysis has benefits and limitations. The AI might misevaluate trees 

as other landcover types, or vice versa but may require less staffing than HI methods 

(Erker et al., 2019). Thereôs still a question on whether AI capability is as valid and 

accurate as HI due to limitations such as complexities of the urban landscape (Alonzo et 

al., 2016). The high variability in accuracy of AI land cover assessments, specifically 

UTC, is dependent on factors such as AI type, landcover type, and imagery quality (de 

Lima Araujo et al., 2021). AI methods are often efficient, and require less human labor 

(Hwang & Wiseman, 2020).  
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3.3 Describing Urban Tree Canopy with Human Intelligence 

Human assessment of UTC through ground or remote sensing methods is the 

standard way to enumerate land covered by trees (Parmehr et al., 2016). Both methods 

have benefits and drawbacks. On the ground assessments can be costly and time 

consuming, while canopy assessments using remote sensing software may require high 

levels of training (McGee et al., 2012). The use of aerial imagery to interpret landcover 

has been used since the 1920s (Waghmare & Suryawanshi, 2017). Methods to estimate 

tree canopy has evolved with the first aerial image taken in a hot air balloon by 

photographer Gaspard-Felix Tournachon in 1858 (Waghmare & Suryawanshi, 2017). 

More recently, this has evolved to multiple sources for satellite and aerial imagery 

including IKONOS, WorldView-2, and Quickbird satellites (McCarthy & Halls 2014). 

Aerial photography is used as a base map from which canopy estimates are derived. As 

an example, randomly placed points on aerial images are tallied as UTC or other 

landcover and then converted to a percent out of all landcover (Walton et al., 2008). For 

example, 100 points out of 1000 points marked as trees would mean the areaôs landcover 

is made up of 10% UTC. This is possible by using software programs such as i-Tree 

canopy or ArcMap programs, which use aerial imagery and a random sample point 

overlay to manually estimate UTC by determining tree cover or not tree cover (Parmehr 

et al., 2016; Ucar et al., 2016).  

 

4. Drivers of Urban Tree Cover  

4.1 Socio-demographic Factors 

 Urban tree canopy varies in its distribution across the landscape based on several 

factors such income level, homeownership, education level, and building density 
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(Cimburova & Berghauser 2021; Martinuzzi et al., 2021; Riley & Gardiner, 2020). There 

is typically a positive relationship between high income and higher education and UTC 

(Danford, 2014). For example, a study in the contiguous 48 United States showed areas 

with low-income blocks had 15.2% less tree cover than high-income areas (McDonald et 

al., 2021). Less affluent neighborhoods often have fewer trees than affluent areas in cities 

(Riley & Gardiner, 2020). Therefore, less affluent areas are less likely to benefit from the 

ecosystem services that trees provide. Communities with individuals who have lower 

education levels, as well as minority neighborhoods tend to have fewer trees (Conway et 

al., 2011). A study in Milwaukee, Wisconsin USA showed that areas with non-Hispanic 

white populations had more urban tree cover than areas with more Hispanic populations 

(Heynen et al., 2006).  

High population density is negatively associated with tree canopy (Grove et al., 

2014). Locations with more rental housing and lower income communities tend to have 

fewer trees (Riley & Gardiner, 2020). The disparity of UTC is often due to resource 

availability for tree planting and maintenance by a municipality (McDonald et al., 2021). 

Some cultural groups may have negative perceptions about trees and therefore may prefer 

no trees on their property (Fraser & Kenney, 2000). A loss of tree canopy is also 

correlated with neighborhood decline, as defined through lower property values (Conway 

et al., 2011). 

 

4.2 Legislation and Ordinances as Factors 

Policy and management can influence urban forests and the distribution of UTC 

(Miller et al., 2015). As an example, green initiatives that lead to tree planting, funding to 
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support urban forest management, and policy implementation such as with tree 

ordinances if done right can lead to increased UTC and a more equitable distribution of 

UTC (Danford, 2014). A literature review on urban forest management indicates that 

management plans, professional staff, ordinances, and advocacy has positively affected 

urban forest programs (Rines et al., 2011). Local governments commonly use tree 

ordinances as a governance mechanism for creating and managing the urban forest 

(Miller et al., 2015; Hauer & Peterson, 2016; Hilbert et al., 2019). Hilbert et al., (2019) 

found communities in Florida with ordinances for large valuable trees known as heritage 

trees had an approximate 6% higher UTC compared to locations lacking this ordinance 

type (Figure 2-4). Locations with higher local tax revenue often have management plans, 

derived from a tree inventory (Rines et al., 2011). Locations with urban and community 

forestry planting programs are more likely to have healthy long-lived trees due to 

appropriate management (Roman et al., 2014).  

 

 

Figure 2-4. Map of urban tree canopy coverage in 43 

communities in Florida, USA. Adapted from Hilbert 2019 
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4.3 Forest Health Factors 

 Biotic factors such as invasive species including fungi and insect pests can 

damage and kill trees and lead to a loss of UTC. Example insects and diseases include 

emerald ash borer (Agrilus planipennis), soapy moth (Lymantria dispar), Dutch elm 

disease (Ophiostoma novo-ulmi), and oak wilt (Bretziella fagacearum), which can 

negatively impact tree populations throughout the United States and abroad (Hauer et al., 

2020; Tubby & Webber, 2010). Milwaukee, Wisconsin USA lost between $8 to $80 

millionô worth of ecosystem services due to Dutch elm disease (Hauer et al., 2020). A 

survey in Ohio USA showed that the economic loss due to emerald ash borer was 

approximately $807 million dollars statewide (Sydor et al., 2007). 

Natural disasters such as storms including hurricanes, tornadoes, and ice storms 

often have a negative impact on urban tree health (Hauer et al., 2011). Ice storm damage 

reduced UTC by over 6% in a Worchester, Massachusetts storm (Hostetler et al., 2013). 

Hurricanes in Florida decreased tree canopy by 7% (Salisbury et al., 2021). Drought 

and/or extreme weather events may also negatively impact UTC (Nitschke et al., 2017). 

Thus, in addition to biotic factors, abiotic factors influence UTC and the management of 

urban tree populations. 

 

5. Urban Forest Management 

 Urban and community forestry programs and ordinances are essential for a 

healthy urban forest (Hilbert et al., 2019). The importance of urban forestry management 

evolved since the 1960s because of Dutch elm disease (DED) and elm tree mortality 

throughout Canada and the United States (Johnston, 1996; Hauer et al., 2017). Proactive 
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management and research in the urban forestry sector became more prominent due to 

DED as well as increasing demand for green space within cities (Johnston, 1996; Nowak 

et al., 2002; Tajima, 2016). However, even as the United States continues to urbanize, 

many areas are still underfunded or have little to no urban forest management whatsoever 

(Hauer & Peterson, 2016). Federal and state funding through grants and other programs 

are extremely important to help build capacity in a community to maintain a healthy and 

safe urban landscape (Hauer et al., 2018). Funding is not limited to tree maintenance but 

is also used to educate people about ecosystem services that the urban forest provides 

(Perkins, 2011). Tree planting initiatives and proper management are vital to limit 

decreasing UTC and maintain a healthy UTC (Nowak & Greenfield, 2020; Eisenman et 

al., 2021).  

 

6. Conclusion 

 As described through this chapter, UTC assessments are important. National, 

regional, and local assessments are important for proper management. A statewide 

canopy analysis provides a regional sense of where to best develop the urban forest and 

guide funding that would be most beneficial for developing local capacity to grow tree 

canopy. Unfortunately, mapping the UTC can be costly and time-consuming endeavor 

which may limit local governmentôs ability to assess the urban forest. 

Accurate canopy data may help managers understand their local urban forest, 

request funding, and maintain the urban forest based on present forest conditions and 

requirements. An UTC assessment may give managers a general idea of boundaries and 

create a reasonable canopy goal (e.g., 27% UTC) based on population, space, and funding 
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(Nowak & Greenfield, 2020). Mapping the urban forest through the United States can 

also help create plans for a more equitable canopy distribution by helping managers 

decide on priority tree planting locations.   
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Abstract 

Urban tree canopy (UTC) as a metric to assess the urban forest traditionally used 

human intelligence (HI) sampling to estimate a value. Artificial intelligence (AI) models 

to estimate UTC provides a less labor-intensive method, once developed. However, 

studies on how HI and AI compare in estimation is limited. Our objective was to 

determine if the accuracy of a HI UTC assessment compared to an AI assessment differs 

within and outside regional AI training area. We found a statistically significant (p< 

0.001) difference between the two interpretations for a statewide UTC estimate (n=397). 

The tree and shrub estimation which formed the UTC metric was higher for HI (31.5%, 

0.72 SE) than the AI (26.0%, 0.51 SE) estimate. Within the AI training region, no 

difference (p=0.723) occurred between the two systems with UTC (~25%). We found a 

significant increase (p<0.001) in UTC between the years 2013 and 2018. Future work 

will explore the relationship between UTC estimates between the two estimation 

methods.  

Keywords: Land Cover Analysis; Longitudinal Assessment; Tree Canopy Change; 

Urban Forest 

Highlights 

¶ Difference between two urban tree canopy assessments were found 

¶ Urban tree canopy increased between two time periods for human intelligence 

¶ High level of agreement between two assessors with urban tree canopy assessment 

¶ Artificial intelligence and human intelligence were similar within the training location 
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1. Introduction  

Urban tree populations offer a multitude of positive benefits through improved 

human health, increased property value, removal of air pollutants, and stormwater 

retention (Dwyer, 1992; Miller et al., 2015; Nowak, 2017). Several approaches exist to 

estimate and model the net benefits that trees provide (Vogt et al., 2015). Models 

likewise exist for estimating canopy cover from trees in built environments and 

associated ecosystem benefits (Nowak, 2017; Lin et al., 2019). Tree Canopy Coverage or 

Urban Tree Canopy (UTC) is a metric to measure urban forests and is represented by the 

percentage of the total land area directly covered by a tree crown comprised of leaves, 

branches, and stems (King & Locke, 2013; Locke, et al., 2015; USDA-FS, 2019). 

Example methodologies include on the ground assessments, visual interpretation of aerial 

imagery, and from artificial intelligence (AI)  programs (Parmehr et al., 2016; Nowak et 

al., 2008; Timilsina et al., 2020). Random point sampling of aerial imagery is a common 

and potentially, a highly accurate method to measure landcover, including tree canopy in 

cities (Nowak et al., 1996). The tree canopy is a three-dimensional structure comprised of 

the horizontal and vertical axis of the tree crown visible from above (Jennings et al., 

1999). Quantifying UTC provides a mechanism for assessing the status of the UTC and 

how the percent of the total land area covered by UTC changes over time (Chuang, et al., 

2017; Locke et al., 2017).  

An UTC analysis is one of the most efficient ways to assess the urban forest 

resources on multiple scales including regional (e.g., statewide), national (e.g., country) 

and globally (Walton, 2008). These analyses include measuring temporal effects due to 

urbanization impacts on urban forests (Berland, 2012); mapping where urban forests exist 
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(Nowak et al., 2008), determining how various land development affects forests 

(Hostetler et al., 2013), planning urban reforestation projects (McPherson et al., 2010), 

and testing the effectiveness of tree protection ordinances (Hilbert et al., 2019). Tree 

canopy cover can be a dependent variable to test the effect of having common municipal 

forestry components such as professional arborist and urban forestry staff, strategic plans, 

tree inventory, tree board, tree planting, pest management, ordinances, and inclusion of 

community members in urban forest operations (Hauer et al., 2018; Hauer et al., 2020; 

Roman et al., 2014, USDA-FS, 2019). Thus, an UTC assessment is a measurement 

approach used to understand factors that drive forest change in cities (Hilbert et al., 

2019). This metric can also be used to estimate ecosystem services from trees (e.g., 

stormwater runoff management, carbon sequestration, shade, and energy conservation, 

and physical and mental health benefits) and management affects (e.g., ordinances and 

inventories) on urban tree populations (Nowak, 2017; Turner-Skoff, 2019). 

An UTC assessment based on imagery conventionally occurs through human 

intelligence (HI) with more recent applications use human-developed algorithms coupled 

with machine-learned estimates of UTC through AI approaches (Nowak, 2017; 

Hermansen-Baez, 2019; Erker et al., 2019; Wang, 2021). Both assessment methods will 

have error, although HI methods tend to currently have a higher level of accuracy and 

assessor agreement (USDA-Forest Service, 2019). An AI approach uses human-

developed estimates to train a computer to use imagery and land classifications to 

calculate UTC within a location (Timilsina et al., 2020; Wang et al., 2021). Conceptually, 

computer-based algorithms for landcover classifications are more efficient (e.g., less 

costly) and effective (e.g., precise estimates). Canopy cover assessments through AI may 
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employ object-based image analysis (OBIA), deep learning models (i.e., U-net) or an 

object-based convolution neural network or OB-CNN (Moskal et al., 2011; Erker et al., 

2019). These methods create algorithms for calculating landcover types based on 

variations in shape, height, and texture of pixels in images (Moskal et al., 2011). 

Although there is a possibility that the landcover in the training location may differ from 

locations outside the training location, which can create error and discrepancies (Erker et 

al., 2019). Ultimately, understanding the limits of HI and AI as it applies to UTC 

estimates should lead to better predictions (Korteling, et al., 2021). 

Much like HI methods, AI methods may use imagery (e.g., NAIP and SPOT) 

and/or remotely sensed data (e.g., light detection and ranging or LiDAR) to classify 

canopy cover (Erker et al., 2019; Hanssen et al., 2021; Pristeri et al., 2021). AI canopy 

estimates are variable, although, current assessments range from ~60 to 90% in accuracy 

(Alonzo et al., 2014; Al-Kofahi et al., 2012; Cleve et al., 2008; MacFaden et al., 2012; 

Walker and Briggs et al., 2007; Zhou and Troy et al., 2008; Ellis and Mathews, 2019). A 

study by Erker et al. (2019) interpreted UTC using AI and found 83.7% to 85.4% 

accuracy for Dane County, WI, USA. A large portion of the error was due to shadows, 

spatial misregistration, mixed pixels, and pixels on borders of different landcover types 

(Erker et al., 2019). The use of AI for tree canopy and landcover classification reduces 

human labor and possibly expenses. But there is a question of whether the risks of 

misidentifying landcover types outweigh the benefits if lower accuracy with AI 

interpretations is the result (USDA-Forest Service, 2019).  

Several socio-economic and sociodemographic factors are related to UTC. There 

is a typical positive relationship between UTC and income and education places (Lowry 
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Jr. et al., 2011). Places with low-income and minority communities often have a lower 

UTC and therefore may receive fewer ecosystem services (Danford et al., 2014). A study 

done in Baltimore, Maryland, USA found a strong negative association between UTC and 

crime rates (Troy et al., 2012). Land-use change, including urbanization and the resulting 

increase in impervious area, may negatively impact UTC (Dwyer et al., 1992; Nowak and 

Greenfield, 2012; Hilbert et al., 2019; Koeser et al., 2020). 

Tree protection ordinances and implementation of tree protection in construction 

areas led to healthier trees, which results in more UTC compared to locations lacking tree 

ordinances and protection (Hill, 2010). A heritage tree ordinance resulted in ~ 6% greater 

UTC compared to communities lacking one in Florida, USA (Hilbert et al., 2019). Pest 

outbreaks such as Dutch elm disease (Ophiostoma novo-ulmi) and emerald ash borer 

(Agrilus planipennis) have negatively impacted urban forests. Dutch elm disease caused 

the death of 50 to 100 million elms in 50 years throughout North America, and it took 

approximately 40 years to recover the lost canopy coverage (Soll, 2016; Hauer et al., 

2020). Wind (e.g., hurricanes, typhoons, tornadoes, microbursts) and ice storms can 

reduce UTC (Hauer et al., 2011; Rahman, 2015; Blackman et al., 2020). Thus, many 

factors negatively impact UTC; therefore, assessment of urban forests and developing 

appropriate maintenance is important for meeting UTC goals (Dwyer et al., 1999; 

Pregitzer et al., 2019). 

Validating how AI systems perform with UTC estimation outside regions and 

datasets where they were created is important to validate and improve estimations. This 

study aims to assess AI and HI vary in UTC estimation. Specifically, the objective was to 

measure tree canopy using HI and test how it differs from values derived through an AI 



 

- 33 - 

estimation system. We asked the following questions: 1) Does a UTC assessment 

generated through an AI system differ from an HI estimate in areas beyond the AI 

training location, 2) Do AI estimations differ from an HI estimate within a region the AI 

was developed, and 3) Was there a change in UTC in Wisconsin communities between 

2013 and 2018 for the HI estimation method? 4) Was there a high-level agreement 

between assessors to validate the HI system by land use components for all sample 

locations? 

 

2. Methods 

2.1. Study Site 

The study occurred in Wisconsin, USA (43.7844° N, 88.7879° W) and used 

communities throughout the state as sample locations (Figure 3-1). The state has 

approximately 5.9 million inhabitants and 

17 million hectares of total landcover (U.S. 

Census, 2019). The sampled community 

populations ranged from 75 to 584,000 

people in locations sampled in this study. A 

sample of 404 communities were selected 

from a total of 685 cities (191), villages 

(411), and towns (83) in the state (Hauer 

and Lorentz, 2018). The study locations 

were selected based on communities that participated in a 2017 study that detailed what 

urban forestry activities they undertake as well as the availability of aerial imagery for 

Figure 3-1. Map of Wisconsin with locations where 

urban tree canopy was sampled compared to non-

sampled locations. 
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creating a UTC assessment (Hauer and Lorentz, 2018). Communities, mainly towns, which 

lacked aerial imagery were excluded from the study.  

 

2.2. Tree Canopy Cover Estimation Process 

Estimates of UTC through HI used aerial imagery acquired from the National 

Agriculture Imagery Program (NAIP). The NAIP images were leaf-on for both 2013 and 

2018 and 1-meter resolution. Community boundary data for the selected sample 

communities were obtained from the Wisconsin Department of Natural Resources 

(WIDNR) Forestry GIS repository (https://data-wi-

dnr.opendata.arcgis.com/search?tags=forest). Each community had 1000 randomly 

placed sample points which were used to estimate UTC, using the create random points 

tool in the data management tools in ArcMap 10.8.1 (ESRI, Redlands, CA). Each point 

was identified as fitting within one of seven assessed land classifications including: 1) 

agriculture, 2) herbaceous & grass, 3) impervious, 4) soil, 5) tree and shrub, 6) water, and 

7) wetland. The tree and shrub classification is also referred as UTC in the results. A 

team of eight evaluators was used to classify all communities for both time periods and 

an evaluator was randomly assigned to an image. A training session was used to calibrate 

evaluators for a consensus of which land classification a sample point was located over. 

To determine the landcover for the HI, an assessor would zoom into each random point at 

a scale of 1:1,600 or greater magnification of up to 1:800 to classify the location. The 

points for each land classification category were summed and converted to a percentage 

of the overall landcover for than community. The process was done in both 2013 and 

2018 to analyze the change in landcover between the 5-year interval for each community. 
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2.3. Tree Canopy Cover Comparison Process 

Results from 2013 HI estimates were compared against AI estimates for 2013 for 

communities throughout the state (Erker et al., 2019). To be consistent with the AI 

approach, the impervious and soil classification were summed together within an 

impervious classification unit. Agriculture was also combined with the herbaceous & 

grass. This resulted in five categories (herbaceous & grass, impervious & soil, tree & 

shrub, water, and wetland) used in the AI system (Erker et al., 2019). The AI generated 

estimates for each community used data from the WIDNR Wisconsin Community 

Canopy Cover (https://dnr.wisconsin.gov/topic/urbanforests/ufia/landcover) derived from 

Erker et al. (2019). The AI system did not generate the water and wetland maps, they 

were acquired from the WIDNR website.  

 

2.4. Accuracy Assessment for Human Intelligence Estimates 

Two assessors out of the eight classified a random 10% sample (100 points per 

map) of HI points for each community both 2013 and 2018 to test for assessment 

accuracy. Two accuracy approaches were used, an Assessors Agreement and Land Class 

Agreement. The Assessors Agreement explains how many points within a land 

classification that both assessors agreed upon relative to points they classified in a land 

classification. The Land Class Agreement was based on disagreements between assessor 

1 and assessor 2 interpretation of a land class and the number of disagreements between 

assessor 2 and what assessor 1 thought was the case within a land class and treating a 

land class as if it was the only feature of interest in a study. Both approaches were 

calculated as follows: 
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Assessors Agreement = (
 

  
) * 100 

Total Agreement was the number sample points that the 1st Assessor and 2nd Assessor 

agreed upon within a classification. Mean Sample Points was the mean number of sample 

points that the 1st Assessor and 2nd Assessor evaluated within a classification. By 

example, the Assessors had total agreement for 86 sample points in a land classification 

and combined had 180 points (Mean Sample Points = 90; 88 for Assessor 1 and 92 for 

Assessor 2): 

ψφ
ωπz ρππωυȢφϷ  

and 

Land Class Agreement = (
   

  
) * 100 

Combined Land Class Agreement is the agreement for each landcover classification was 

derived from the Sample Points ï (1st Assessor Land Class Disagreement + 2nd Assessor 

Land Class Disagreement). Sample Points were the number of locations assessed for all 

land classifications. By example, within a land classification assessor 1 disagreed with 3 

sample points of assessor 2 and assessor 2 disagreed with 4 sample points of assessor 1 

for 7 combined disagreements (100 ï 7 = 93 agreements) for 100 sample points that were 

evaluated: 

ωσ
ρππzρππωσȢπϷ 

 

2.5. Statistical Approach 

Statistical analyses used SPSS Version 28 (IBM Corp, Armonk, NY). A test for 

significant difference between the AI and the HI mean percent estimates for each land 
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classification used a paired t-test for the statewide comparison of all communities 

(n=397). A t-test was also used to evaluate for difference between the HI and AI methods 

in the location (Dane County, Wisconsin, USA) used to train the AI system (n=21). 

Similarly, a t-test was used to test for difference between two time periods (2018 ï 2013) 

and percent change in each land classification (n=404). An ANOVA was used to test for 

assessment accuracy by using the agreement between two assessors for the mean of each 

cover type for the state. For this study, a p Ò 0.05 was used for decision making to 

interpret differences. A standard error of the mean (SEM) was further calculated for 

interpretation of findings. 

 

3. Results 

This study found differences in the UTC classification between AI and HI for 

communities outside the training location. However, no difference was found between 

the AI and the HI within the training location for UTC. This suggests that the UTC using 

the AI system should be validated using independent data outside the regions of the 

training data set. The HI system also showed a change in landcover between the years of 

2013 and 2018 with percent of UTC increasing. Lastly, assessor agreements for the HI 

were between 90% and 95% for UTC.  

 

3.1. Artificial Intelligence Training Location  

No difference was found within the training location between the HI and AI for 

UTC estimates (p=0.723). Also, no difference was found for the herbaceous (p=0.332) 

and impervious (p=0.218) land classifications for the training location (Table 3-1). 
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Differences were found with water (p=0.003) and wetland (p=0.006). Both water and 

wetland were uncommon and each below approximately 4% overall of total land cover 

for the communities studied. Herbaceous was most common with slightly more than 41% 

of overall land cover. Both impervious & soil and trees & shrubs each comprised 

approximately one-quarter of the overall land cover in Dane County, WI, USA for the 21 

communities (Figure 3-2). The HI percent for each landcover type was out of a 100% 

total (Table 3-1). Thus, an important finding was a similar ability to estimate UTC with 

the HI and AI approaches within the margin of error (SEM) for the AI training location. 

 

 

 

Table 3-1. Land classification area difference between human intelligence and artificial intelligence training 

area (Dane county, Wisconsin, USA) for 2013. 

Land  

Classifications 

HI 

Mean 

(%)  

AI 

Mean 

(%)  

Mean 

Difference 

= HI - AI 

(%)  

Std. 

Error 

Mean 

(%)  

95% 

Lower 

Confidence 

Interval  

95% 

Upper 

Confidence 

Interval  

t-

value 

p-

value1 

Herbaceous  42.69 40.60 1.83 1.84 -2.03 5.69 1.00 0.332 

Impervious & 

Soil 

27.26 29.04 -1.40 1.10 -3.70 0.90 -1.28 0.218 

Trees & 

Shrubs 

25.17 24.66 0.43 1.19 -2.07 2.92 0.36 0.723 

Water 2.94 1.46 1.48 0.43 0.57 2.38 3.42 0.003 

Wetland 1.94 4.24 -2.34 0.75 -3.91 -0.77 -3.13 0.006 

1 Differences used a paired t-test, n=21 
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3.2. Statewide Comparison Between Human Intelligence and Artificial Intelligence 

A difference was found between the HI and AI systems when land classifications 

were conducted beyond the AI training area. Four landcover classifications (Impervious 

& Soil, Trees & Shrubs, Water, and Wetland) significantly differed (p<0.001) between 

HI and AI systems (Table 3-2). No difference (p=0.743) occurred for the herbaceous 

category. The herbaceous land classification was most common for both systems (~42%). 

The tree & shrub estimate was higher for the HI tree canopy cover (31.5%, SE=0.72) than 

in AI (26.0%, SE=0.72). In contrast, the impervious & soil classification was higher for 

the AI (26.2%, SE=0.53) than in HI (21.5 %, SE=0.51). Both wetland and water 

classifications each made up a small percent, below 4% overall (Figure 3-3).  

  

Figure 3-2. Land classification difference between human intelligence and artificial intelligence in 

Dane county, Wisconsin, USA for 2013. (n=21, bars are Standard Error of the Mean) 
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Table 3-2. Mean land classification for human intelligence and artificial intelligenc and their difference for 

communities in Wisconsin, USA for 2013. 

Land 

Classifications 

HI 

Mean 

(%)  

AI 

Mean 

(%)  

Mean 

Difference 

= HI - AI 

(%)  

Std. 

Error 

Mean 

(%)  

95% Lower 

Confidence 

Interval  

95% Upper 

Confidence 

Interval  

t-value p-value1 

Herbaceous 41.83 41.64 0.18 0.56 -0.92 1.29 0.33 0.743 

Impervious & 

Soil 

21.46 26.25 -4.79 0.39 -5.56 -4.02 -12.29 <0.001 

Trees & 

Shrubs 

31.51 26.03 5.48 0.48 4.55 6.41 11.54 <0.001 

Water 3.64 2.94 0.70 0.10 0.50 0.90 6.90 <0.001 

Wetland 1.57 3.14 -1.57 0.18 -1.92 1.22 -8.88 <0.001 

1 Differences used a paired t-test, n=397 

Figure 3-3. Land classification difference between human intelligence and artificial intelligence in 

Wisconsin, USA in 2013. (n=397, bars are Standard Error of the Mean) 
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3.3 Change Between 2013 and 2018 Human Intelligence Assessment 

Three of the seven land classifications significantly changed (p<0.001) between 

2013 and 2018 (Table 3-3, Figure 3-43). Tree & shrub (UTC) area increased by an 

absolute value of 1.73% (0.17 SEM) from 31.6% (2013) to 33.3% (2018). While 

decreases in land area occurred for soil (0.47%, 0.08 SEM) and agriculture (1.38%, 0.17 

SEM). Water increased (p=0.043) by 0.11% (0.06 SEM). 

The UTC varied between 4.4% to 84.0% for communities in 2013. In 2018 the 

range was 6.8% to 86.3%. The UTC classification was the most common for both 2013 

(31.6%) and 2018 (33.3%). Herbaceous and grass were the next most common in 2013 

(23.3%) and 2018 (23.2%). Impervious area was unchanged (p=0.242) between the two 

time periods, 2013 (19.8%) and 2018 (19.9%). Agriculture decreased (p<0.001) and was 

18.5% and 17.1 in 2013 and 2018, respectively. Soil, water, and wetland were all 

relatively uncommon, each below 5%. 

Table 3-3. Land classification area change from 2013 and 2018 in Wisconsin, USA. 

Land 

Classifications 

2013 

Mean 

(%)  

2018 

Mean 

(%)  

Mean 

Change 

(%)  

Std. Error 

Mean (%) 

95% Lower 

Confidence 

Interval  

95% Upper 

Confidence 

Interval  

t-value p-

value1 

Herbaceous 23.28 23.20 -0.08 0.20 0.30 -0.46 -0.42 0.674 

Impervious 19.78 19.91 0.13 0.11 0.34 -0.09 1.17 0.242 

Soil 1.69 1.22 -0.47 0.08 -0.31 -0.63 -5.78 <0.001 

Trees & 

Shrubs 

31.58 33.31 1.73 0.16 2.05 1.41 10.73 <0.001 

Water 3.64 3.75 0.11 0.06 0.22 0.00 2.03 0.043 

Wetland 1.56 1.52 -0.04 0.06 0.09 -0.17 -0.62 0.539 

Agriculture 18.47 17.04 -1.38 0.17 -1.05 -1.71  -8.17 <0.001 

1  Differences used a paired t-test, n=404 
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3.4. Assessor and Land Class Agreement 

The assessorôs agreement showed no significant difference between 2013 and 

2018 for both statical analyses of the HI assessment (p>0.70). However, significant 

differences (p<0.001) occurred for landclass agreement for both assessment approaches 

(Figure 3-5, Figure 3-6). The assessorôs agreement approach showed poor ability for two 

assessors to agree on the wetland (<40% agreement) and soil (<50%) classifications 

(Figure 3-5). Agreement with impervious and tree & shrub were best and exceeded 90%. 

Overall, for all land classifications during both time periods an 87.9% agreement 

occurred (Figure 3-5). Overall, the second analysis approach land class agreement 

between human assessors was approximately 94% overall for both periods (Figure 3-6). 

The tree & shrub category had ~95% agreement overall (Figure 3-6). Soil and wetland 

classification performed well in the land class agreements approach since the area 

Figure 3-4. Land classification comparison between 2013 and 2018 in Wisconsin, USA. 

(n=404, bars are Standard Error of the Mean) 
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associated with these attributes was small and less than 2% for each of the land 

classifications (Figure 3-6). 
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Figure 3-5. Assessorsô agreement for landcover classifications over two assessment time periods. (n=404) 
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Figure 3-6. Land class agreement between two assessors over two assessments time periods (n=404). 
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4. Discussion 

4. 1. Human Intelligence Compared to Artificial Intelligence  Within the Training 

Location 

The study showed no significant difference between AI and HI in the training 

location for terrestrial land covers. This finding is consistent with results of Erker et al. 

(2019) which found no difference between their AI estimates and estimated UTC using a 

random point sample method. That approach is the same as we used for our HI method. 

Thus, this provides evidence supporting the AI estimates from the Erker (2019) method 

in the training location. Water and wetland land class were significantly different 

between the AI and HI systems. However, these aquatic features were derived from 

vector layers and were independent of the imagery used to estimate land classifications in 

the AI (Erker et al., 2019).  

 

4.2. Human Intelligence Compared to Artificial Intelligence Beyond the Training 

Location 

The statewide comparison between HI and AI were significantly different for all 

classifications except herbaceous. Overall, the canopy assessments were significantly 

different in their interpretation of UTC throughout the state. The interpretation methods 

may differ due to inconsistencies in the AI algorithm, image quality, shadows, differing 

tree heights as well as change in tree community structure by location (Erker et al., 2019). 

Common misclassifications with AI systems may also be related to pixels occurring on 

the edge of vegetated and non-vegetated areas, and spectral similarities between certain 

land classification types (Myeong et al., 2001). AI might misclassify UTC in areas that 
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have mixed-use landcover compared to urban and agricultural areas (Ellis & Mathews, 

2019). Trees in urban areas and residential areas are often similar heights as buildings 

(Ellis & Mathews, 2019).  

A change in forest structure from the training location may decrease the accuracy 

of the AI used (Baines et al., 2020). If the canopy structure changes due to different tree 

species the AI might not be able to identify trees correctly. It is important to train AI to 

represent the variability present in landcover types that will be assessed (Brown et al., 

2020). This is especially true if the assessment is large and has differing landcover and 

geography throughout. Also, it is important to take into consideration that there are 

different types of AI available to estimate UTC which differ in accuracy (Coulston et al., 

2012; Baines et al., 2020; Timilsina et al., 2020). The AI method of Erker et al. (2019) 

used NAIP and SPOT imagery with their conclusion that NAIP imagery provided much 

higher levels of accuracy for UTC estimations (Erker et. al., 2019) 

 

4.3 Change Between 2013 and 2018 Human Intelligence Assessment 

While there is no specific canopy goal for Wisconsin, overall, the UTC in 2018 

from this study was approximately 33.3% based on the HI assessment. While Nowak and 

Greenfield (2018) used a similar methodology to this study and reported a mean 38.3 % 

(1.5 SE) UTC from 2015 data in Wisconsin. Differences between these two estimates can 

be attributed to Nowak and Greenfield (2018) excluding water bodies (~4% in Wisconsin 

communities) and fewer sample points (1000) versus much greater (~800,000) from this 

study. The optimal canopy cover in a community was not ascertained in this study, likely 

would vary by community, and such goal setting is important (Hauer and Peterson, 

2016). 
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The UTC in Wisconsin increased significantly between 2013 and 2018. Unlike 

locations in the conterminous United States, which experienced a 0.2% annual UTC loss, 

Wisconsinôs UTC has increased by almost 2% in the five-year interval studied (Nowak & 

Greenfield, 2012). The UTC increased, while agricultural landcover decreased over the 5-

year period. Agriculture land area has decreased in some conterminous United States 

regions, while urbanized area has increased (Homer et al., 2020). Although there are 

some locations such as Detroit, Michigan where urbanized areas are in decline and 

agricultural areas are increasing (Paddeu, 2017). 

Although the tree canopy increased overall, some communities experienced a 

local loss of UTC which may be due to pests such as emerald ash borer (Hauer et al., 

2016), storms (Blackman et al., 2020), or urbanization (Nowak & Greenfield, 2012). 

Ordinances and local legislation are important procedures which can aid in retention of 

UTC relative to locations lacking such an ordinance (Hilbert et al., 2019). Heritage tree 

ordinances were associated with a higher level of UTC in Florida, USA (Hilbert et. al., 

2019) 

 

4.4 Assessor and Land Class Agreement 

The HI interpretation was validated by another interpreter. It is important to 

assess agreement of the first assessor as a form of quality control (McGee et al., 2012). 

Both the soil and wetland classifications had the highest level of inaccuracy, which might 

be in part due to the low percent of landcover overall that is made up of these two 

landcover types. However, water also comprised a low overall percentage of sample 

points and two assessors readily agreed on this land classification. As the number of 
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sample points for a landcover increases error declines (Parmehr et al., 2016). Error in 

assessments may also be related to aerial imagery quality (Nowak et al., 1996). Thus, it is 

more likely that estimating soil and wetland is currently a challenge and improved 

methods are needed for soil and wetland interpretation. 

The overall agreement for UTC was between 90% to 95% using two statistical 

analyses for 2013 and 2018 which is consistent with other current UTC studies (Hilbert et 

al., 2019; Martinuzzi et al., 2021). The agreement between assessors for the study in 

Florida ranged from 94.9% to 99.5% (Hilbert et al., 2019). The higher levels of accuracy 

in Florida is most likely due to the classification system of tree or not tree compared to 

seven different landcover types in this study. These high levels of agreement reinforce the 

accuracy of HI assessments in this study between two assessors using an HI approach.  

 

5. Conclusion 

Our objectives were to analyze whether there was a difference between human 

intelligence (HI) and artificial intelligence (AI) with urban tree canopy (UTC) assessment 

methods, whether there was a change in UTC between two time periods, and whether the 

HI assessment were accurate. We created an HI assessment of landcover specifically with 

UTC to compare to AI. We found a significant difference in UTC between the two 

methods as UTC estimates for communities outside the training location. However, we 

found that there was no difference in UTC in the training location of the AI. Findings 

from this study could aid in understanding how AI canopy assessment performs outside 

of its training locations to improve AI development. Appropriate sampling and training in 

multiple locations might aid in higher accuracy levels for the AI system. We also 
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compared HI between 2013 and 2018 and found an increase in UTC. The availability of 

high-resolution imagery and the implementation of UTC goals whether statewide or by 

municipality, have created an increase in research related to urban forest land cover. 

Research comparing canopy assessments using AI to HI methods is limited, especially on 

a statewide scale (King & Locke, 2013). These comparison analyses will provide insight 

into the most accurate and beneficial UTC assessments. Understanding the UTC and 

therefore urban forest is crucial for appropriate management and improved policies. 
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Chapter 4 

Summary 

Urban trees provide many benefits, therefore assessing urban tree canopy 

coverage is important for appropriate management. Assessing the urban tree canopy 

(UTC) via artificial intelligence (AI) is a relatively new resource therefore research is 

somewhat limited. The literature review for this study outlines tree benefits, factors that 

affect UTC as well as different assessment methods and their advantages and 

disadvantages. A comprehensive literature review shows how UTC assessments have 

evolved as technology has changed. With this evolution comes uncertainty with accuracy. 

The ability to automate UTC assessments is useful but may not be the most accurate 

method to understand or map landcover, specifically UTC. It is important to consider 

factors such as time constraints, workforce availability, desired accuracy, and funding 

when considering what type of UTC assessment will be used. There are advantages and 

disadvantages to the selected UTC assessment system. 

The primary objectives of this study were to 1) Analyze the difference between an 

AI and HI assessment of urban tree canopy (UTC) beyond the AI training location; 2) 

Compare the estimation methods for the AI training method to the HI method specifically 

in the training location; and 3) Analyze the change in UTC between 2013 and 2018 for 

the HI interpretation method. 4) Lastly, we wanted to validate the agreement accuracy of 

the HI assessment by studying landcover classification agreement between two assessors. 

This thesis accomplished all objectives, by mapping the urban forest and comparing 

training methods as well as the 2013 and 2018 assessments.  



 

- 59 - 

A main finding of this research showed canopy comparison between the HI and 

AI for the training location was similar, but this was not the case for the overall state 

comparison using communities outside the training location. The tree and shrub category 

for AI and HI differed (p<0.001) with HI categorizing it by 5.5% higher overall. We 

cannot say with certainty if one method was significantly less accurate in predicting 

landcover. However, the high level of agreement (>90%) between assessors and the 

ability to predict landcover within the training location suggests the HI method as a 

standard to compare against. 

This study also suggests that UTC increased between, 2013 and 2018, by almost 

2%. This may be due to multiple factors including appropriate management strategies, 

funding, and change in other landcover types in communities. The HI landcover 

assessments for both time periods were assessed for accuracy by an assessor who did not 

create the first assessment. The overall accuracy for UTC between two assessors was 

higher than 90% which is standard for human accuracy assessments. This also provides 

evidence for the accuracy of the HI with the estimated land classifications. Future work 

should occur to understand which factors might explain the limitation for AI.  

 

Future Work  

The creation of a comprehensive urban forest assessment and comparing it to the 

AI method is the first step. The next step would be to consider factors that affect UTC in 

different locations. Tree canopy can be compared to socioeconomic factors, such as 

income, education level and homeownership. Comparisons between UTC and different 

land use types such as urban areas and agriculture can be made. Another step would 
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include an assessment of factors, such as management strategies, related to how and why 

the UTC increased in the 5-year time frame sampled. Lastly, UTC should be sampled 

again in 2023 to determine if canopy has remained stable, increased, or decreased.  
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Appendix A 

 

Author Date Location Type 
Canopy 

(%) SE 
Producers 
Accuracy 

Blackman and Yuan 2020 St. Peter, MN Computer 34.0   
Fan et al.  2019 Cook County, IL, USA Computer 23.5   
Guo et al. 2019 Christchurch, NZ Computer 11.0   
Guo et al. 2019 Christchurch, NZ Computer 10.0   

Iverson et al.  2000 Chicago, IL, USA Computer 21.0   
Kolosna and Spurlock 2019 Old East Durham, NC Computer 51.0   
Kolosna and Spurlock 2019 Crest Street, NC Computer 46.0   
Kolosna and Spurlock 2019 Walltown, NC Computer 49.0  92.9 

Kolosna and Spurlock 2019 Duke Park, NC Computer 74.0  85.6 

Kolosna and Spurlock 2019 Forest Hills, NC Computer 76.0  96.7 

Kolosna and Spurlock 2019 Trinity Park, NC Computer 66.0   
Kolosna and Spurlock 2019 Pine Knolls, NC Computer 68.0   
Kolosna and Spurlock 2019 Northside, NC Computer 72.0   
Kolosna and Spurlock 2019 Roger-Eubanks, NC Computer 89.0   
Kolosna and Spurlock 2019 Kings Mills/Morgan, NC Computer 88.0   
Kolosna and Spurlock 2019 Coker Hills, NC Computer 91.0   
Kolosna and Spurlock 2019 Gimghoul, NC Computer 71.0   

Landry and Pu 2010 Tampa, USA Computer 29.0   
Landry et al.  2020 Toronto, Canada Computer 27.0   
Landry et al.  2020 Gatineau-Ottawa, Canada Computer 27.0   
Landry et al.  2020 Montreal, Canada Computer 27.0   
Landry et al.  2020 Quebec City, Canada Computer 27.0   
Lanza et al.  2019 USA Computer 19.2   
Lanza et al.  2019 USA Computer 10.0   
Lanza et al.  2019 USA Computer 20.1   
Locke et al.  2017 Los Angeles, California Computer 14.5   
Lowry et al.  2011 Lake County, Utah Computer 20-50   

Martinuzzi et al.  2021 Santo Domingo, DR Computer 27.0   
McGee et al 2012 Winchester, VA Computer 27.0   

McPherson et al. 2010 Los Angeles, CA  Computer 21.0   
Morgenroth et al. 2017 Christchurch, NZ Computer 17.8 1.15  

Morgenroth et al. 2017 Christchurch, NZ Computer 14.3 1.09  

Namin et al.  2020 USA Computer 27.0   
Namin et al.  2020 USA Computer 17.0   
Namin et al.  2020 USA Computer 10.0  95.0 

Namin et al.  2020 USA Computer 8.0  95.6 

Namin et al.  2020 USA Computer 29.6   
Namin et al.  2020 USA Computer 20.9  92.1 

Namin et al.  2020 USA Computer 15.1   
Namin et al.  2020 USA Computer 13.4   

Sorrensen et al. 2015 Lubbock, TX Computer 16.0 2.64  

Sung 2012 Lakeway, TX, USA Computer 40.6   
Sung 2012 Lakeway, TX, USA Computer 42.4   
Sung 2012 Lakeway, TX, USA Computer 28.6   
Sung 2012 Lakeway, TX, USA Computer 33.2   
Sung 2012 Lakeway, TX, USA Computer 71.0   
Sung 2012 Lakeway, TX, USA Computer 66.7   
Sung 2012 Lakeway, TX, USA Computer 59.2   
Sung 2012 Lakeway, TX, USA Computer 71.1   

 

Table A-1. Urban Tree Canopy Assessments 
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Table A-1. (cont.) 

Author Date Location Type 
Canopy 

(%) SE 
Producers 
Accuracy 

Walton et al. 2008 Syracuse, NY Computer 26.6 3.5  

Atasoy 2020 Osmaniye, Turkey Human 6.4 0.97 86.7 

Berland 2012 Minneapolis, MN Human 17.0   
Berland 2012 Minneapolis, MN Human 33.0   

Bigsby et al.  2014 Baltimore, MD Human 24.0   
Bigsby et al.  2014 Raleigh, NC Human 55.0   

Bowman et al.  2012 Ames, IA, USA Human 10.6   
Bowman et al.  2012 Cedar Rapids, IA, USA Human 15.9   
Bowman et al.  2012 Council Bluffs, IA, USA Human 9.5   
Bowman et al.  2012 Davenport, IA, USA Human 12.2   
Bowman et al.  2012 Ames, IA, USA Human 12.0   
Bowman et al.  2012 Cedar Rapids, IA, USA Human 18.8   
Bowman et al.  2012 Council Bluffs, IA, USA Human 13.9   
Bowman et al.  2012 Davenport, IA, USA Human 9.7   

Briber et al.  2015 Massachusetts Human 39.4   
Doick et al.  2020 Great Britain Human 22.0 1.3  

Ersoy and Atak  2021 Aydin, Turkey Human 26.7 0.43  

Ersoy and Atak  2021 Aydin, Turkey Human 23.2 0.41  

Hansford et al. 2020 Torbay, UK Human 24.0   
Hansford et al. 2020 Torbay, UK Human 24.6   

Hilbert et al.  2019 Florida Human 34.4   
Hostetler et al. 2013 Central Massachusetts Human 58.0   

Hwang and Wiseman 2020 Blacksburg, VA, USA Human 15.9 10  

Hwang and Wiseman 2020 Blacksburg, VA, USA Human 14.5 10  

Jantakat and Juntakut 2020 
Nakhornratchasima, 

Thailand Human 34.3   

Jantakat and Juntakut 2020 
Nakhornratchasima, 

Thailand Human 17.1   
Krafft and Fryd 2016 Maribyrnong, Australia Human 12.2   
Krafft and Fryd 2016 Melbourne, Australia Human 12.3   
Krafft and Fryd 2016 Port Phillip, Australia Human 15.1   
Krafft and Fryd 2016 Stonnington, Australia Human 22.1  93.0 

Krafft and Fryd 2016 Yarra, Australia Human 17.1   
McGovern and Pasher 2016 Canada Human 27.6 0.21  

McGovern and Pasher 2016 Canada Human 26.1   
Mills et al. 2016 Oregon & Washington Human 17.0   

Nowak and Greenfield 2020 Urban-Globally Human 26.7 1.6  

Nowak and Greenfield 2020 Urban-Globally Human 26.5 1.6  

Nowak and Greenfield 2012 USA Human 27.8   
Nowak and Greenfield 2018 USA Human 40.4 0.4  

Nowak and Greenfield 2018 USA Human 39.4 0.4  

Pauleit and Duhme 2000 Munich, Germany Human 18.0   
Riley and Gardiner 2020 NYC, USA Human 16.8   
Riley and Gardiner 2020 Philadelphia, PA, USA Human 17.7   
Riley and Gardiner 2020 Washington. D.C.  Human 26.9   
Riley and Gardiner 2020 Chicago Human 19.8   
Riley and Gardiner 2020 Cleveland Human 21.4   
Riley and Gardiner 2020 Pittsburgh Human 37.7   
Riley and Gardiner 2020 Los Angeles Human 11.4   
Riley and Gardiner 2020 Sacramento Human 18.0   
Riley and Gardiner 2020 San Diego Human 12.4   

Roman et al. 2021 Philadelphia, PA, USA Human 18.7   
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Table A-1. (cont.) 
 

Author Date Location Type 
Canopy 

(%) SE 
Producers 
Accuracy 

Roman et al. 2021 Philadelphia, PA, USA Human 21.3   
Roman et al. 2021 Philadelphia, PA, USA Human 23.5   
Roman et al. 2021 Philadelphia, PA, USA Human 24.8   
Roman et al. 2021 Philadelphia, PA, USA Human 23.0   

Schmitt-Harsh et al.  2020 Bloomington, Indiana Human 43.4   
Shields and Slater 2017 Shrewsbury, England Human 14.0   

Varuzoo and Harvey 2017 Worchester, MA, USA Human 34.7   
Zipperer et al.  2012 Gwynns Falls, MD Human 28.0  98.0 

Mincey et al.  2013 Bloomington, IN  
Human and 
Computer 30.4   

Parmehr et al. 2016 Williamstown, Australia 
Human and 
Computer 0-30   

Escobedo et al. 2006 Santiago, Chile Human 16.5 0.6  
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Appendix B 

WI Urban Landcover Assessment Protocol Methods 

To Get Connected to Data 

¶ Click on file explorer 

¶ Click on this PC 

¶ Click on computer tab at top of screen next to file 

¶ Click on map a network drive 

¶ Make sure the drive is z drive, if not click on dropdown and select z drive 

¶ Highlight and paste this extension into the file bar below the drive bar, and click 

finish 

o \\uwsp.edu\files\cnr\projects\TreeCanopy  

To Get Data onto ArcMap 

¶ After Opening ArcMapé  

¶ New Blank Map 

¶ Click on add data button  

¶ Click on connect to folder  

o Click on this PC 

o Scroll down to TreeCanopy and select it 

¶ Click on connect to folder 

¶ Click home Z and all county imagery and municipal shapefiles should be there  

o Municipal Boundaries are under DNR_MUNI_BOUNDARIES 

¶ Select what orthoimage you need within each county  

To Conduct Random Sampling  

¶ Click on Arc Toolbox up by the Windows and Help tabs 

¶ Click on Data Management Tools  

¶ Click on Sampling  

¶ Click Create Random Points 

¶ Click on folder at end of Output Location bar 

o Click on county doing work in (or majority of work in county) 

o Hit Add 

o Name the Outpoint Feature Class (1000_RP_Municipality_Year) 

o Click on folder for Constraining Feature Class and choose whichever 

Municipal Boundary Shapefile youôre working in  

o Scroll down, and at number of points for long, input 1000 

o For under Minimum Allowed Distance, in the Linear Unit Bar, input 5 and 

make sure drop-down menu to the right of it says Meters 

o Click OK 
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¶ Right click on sampling layer made in the Table of Contents and Click Zoom to 

Layer (this will put all the sampling dots for your Muni into one screen) 

¶ Click on the Plus sign on the sampling layer made so you can see the symbol for 

the dots 

¶ Click on the dot 

¶ Select Circle 12, Size 11, and whatever color is easiest to see for you  

¶ Right click on sampling layer just made, and select open attribute table 

¶ Right click on Shape for the second column and select turn field off, do that for 

any other columns so there is just the Land_Cover_Class column left 

¶ Click on the table options button below Table and select add field  

¶ Make the Name Land_Class and make sure drop down below that is on short 

integer and select OK 

¶ Right click at top of Land_Class column and select field calculator, then click yes 

at the pop-up (note this is a permanent change that canôt be undone, so if you 

mess up then create a new column and do it again) 

¶ Double click on FID in the fields box, and hit ok 

¶ Right click and turn FID off 

¶ Click on editor to start editing and select your layer for the Random Points 

¶ Click on editor drop down on toolbar 

¶ Select start editing 

¶ Select current layer editing 

¶ Right click in attribute table of layer file working on, and click on the little box 

left of the number 0, and click Zoom To 

¶ Zoom in or out in the imagery to a scale of 1,250 

¶ Click in Land_Cover column at number 0 and enter in Land Cover value for that 

point  

o Land Cover Values 

1. Herbaceous 

2. Impervious 

3. Soil 

4. Trees/Shrubs 

5. Water 

6. Wetland 

7. Agriculture 

¶ Once it is inputted, press, and hold the control button on the keyboard and then 

select the N key, this will automatically take you to the next point in the attribute 

table at the selected zoom and you can just click and change the value 

¶ Do this for all 1000 points  

¶ Select at top of column and click on sort and count the number of each land cover 

classes 

¶ Divide the total number of each LCC by 1000 (or total number of points) and that 

is the percentage of that landcover for each municipality 
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Cross-validation of 10% subsample Method 

1. Open ñCITY_Agreement_TEMPLATE.ò Save as 

CITYNAME_Agreement_YOURINITIALS to the appropriate folder. 

2. Open the cityôs map document (.mxd). Randomly select 10% of the points from a 

single community (e.g., 100 points out of 1000). To do this: 

a. Open attribute table for random points layer 

b. Add new field 

c. Select ñfloatò 

d. Name 10_Percent 

e. Start editing 

f. Choose the layer ñrandom points selectionò 

g. Right click on 10_percent and select field calculator 

h. Switch Parser from VB Script to Python 

i. Check the Show Codeblock check box. 

j. Copy the following code as is, and paste to the Pre-Logic Script Code text 

box 

 import random, then def rand ():  return random. random() 

 

k. Type rand () in the F10_Percent text box. 

l. Click OK. Random numbers are generated in the new field. 

m. Click the Table Options button and click Select By Attributes 

n. Type in ñ10_Percentò < .1 

o. Click apply 

p. 10% of points should be selected (100 points) 

q. Create a new layer from selected points named ñ10_Percentò 

r. Change symbol to cross 3 and color blue size 18 (or something to 

differentiate from original 1000 random points) 

s. Add new field called ñTree_02ò  

t. Delete the layer called ñrandom points selectedò 

3. Cross-validate the points chosen above by classifying the landcover based on the 

interpretation same methods. Fill in the attribute table accordingly. 

4. Use the conversion tool to export the new attribute table to an excel file that has 

the cross-validated 10% sample. Save the excel file in the city folder and name it 

10_percent. Open and copy the FID, Tree_01 and Tree_02 columns into the 

appropriate columns of the ñAgreementò workbook from step 1. 

5. The ñAgreementò column and table should auto-populate. Now we have a level of 

agreement we can report. 90% agreement is ideal. 

6. Save your work in both ArcMap and Excel.  
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Appendix C 

Table C-1. Artificial Intelligence (AI) and Human Intelligence (HI) Land classifications comparisons                

  Herbaceous Impervious Tree&Shrub Water Wetland 

Name HI AI Diff w/in SD HI AI Diff w/in SD HI AI Diff 
w/in 
SD HI AI Diff 

w/in 
SD HI AI Diff 

w/in 
SD 

Albany 45.2 46.6 -1.4 YES 15.7 20.0 -4.3 YES 34.3 28.7 5.6 YES 4.8 3.9 0.9 YES 0.0 0.8 -0.8 YES 

Algoma 37.3 50.2 -12.9 NO 33.8 42.3 -8.5 NO 21.9 3.2 18.7 NO 3.1 2.4 0.7 YES 3.9 1.9 2.0 YES 

Allouez 20.1 18.8 1.3 YES 33.4 31.7 1.7 YES 34.4 37.9 -3.5 YES 10.0 10.0 0.0 YES 2.1 1.6 0.5 YES 

Alma 17.1 20.9 -3.8 YES 5.5 9.3 -3.8 YES 45.4 36.4 9.0 YES 23.5 23.7 -0.2 YES 8.5 9.7 -1.2 YES 

Alma Center 64.7 46.9 17.8 NO 13.1 34.8 -21.7 NO 19.4 7.5 11.9 NO 0.3 0.0 0.3 YES 2.5 10.8 -8.3 NO 

Almena 50.0 55.4 -5.4 YES 16.4 30.8 -14.4 NO 31.4 10.8 20.6 NO 0.5 0.0 0.5 YES 1.7 3.0 -1.3 YES 

Almond 55.9 38.9 17.0 NO 19.1 47.5 -28.4 NO 21.5 13.6 7.9 YES 0.0 0.0 0.0 YES 3.5 0.0 3.5 YES 

Amery 24.0 34.7 -10.7 YES 20.4 27.7 -7.3 YES 28.7 15.4 13.3 NO 19.4 11.9 7.5 NO 7.5 10.3 -2.8 YES 

Amherst 51.9 35.5 16.4 NO 19.8 37.7 -17.9 NO 24.3 23.2 1.1 YES 3.4 0.5 2.9 NO 0.6 3.1 -2.5 YES 

Amherst 
Junction 51.7 42.3 9.4 YES 16.3 26.9 -10.6 NO 32.0 30.4 1.6 YES 0.0 0.0 0.0 YES 0.0 0.5 -0.5 YES 

Antigo 40.8 44.9 -4.1 YES 28.9 30.5 -1.6 YES 27.9 22.7 5.2 YES 0.4 0.4 0.0 YES 2.0 1.5 0.5 YES 

Arcadia 33.6 47.7 -14.1 NO 30.6 32.5 -1.9 YES 22.4 8.8 13.6 NO 8.3 2.4 5.9 NO 5.1 8.7 -3.6 NO 

Argyle 55.2 42.1 13.1 NO 24.0 32.8 -8.8 NO 18.9 20.0 -1.1 YES 1.5 1.5 0.0 YES 0.4 3.6 -3.2 YES 

Arlington 77.7 68.1 9.6 YES 17.5 24.9 -7.4 YES 4.6 4.4 0.2 YES 0.2 2.5 -2.3 NO 0.0 0.2 -0.2 YES 

Arpin 42.8 60.7 -17.9 NO 13.3 13.8 -0.5 YES 39.8 20.6 19.2 NO 0.6 0.4 0.2 YES 3.5 4.5 -1.0 YES 

Ashwaubenon 33.0 29.4 3.6 YES 39.7 44.1 -4.4 YES 21.9 22.0 -0.1 YES 4.8 4.2 0.6 YES 0.6 0.3 0.3 YES 

Athens 42.5 43.0 -0.5 YES 12.3 18.1 -5.8 YES 44.3 36.7 7.6 YES 0.8 0.9 -0.1 YES 0.1 1.3 -1.2 YES 

Auburndale 75.7 36.6 39.1 NO 14.7 53.6 -38.9 NO 8.7 6.8 1.9 YES 0.8 0.1 0.7 YES 0.1 2.9 -2.8 YES 

Augusta 58.9 54.5 4.4 YES 20.0 39.9 -19.9 NO 19.6 2.6 17.0 NO 0.6 0.0 0.6 YES 0.9 3.0 -2.1 YES 

Avoca 25.2 43.2 -18.0 NO 5.1 11.1 -6.0 YES 44.6 29.5 15.1 NO 11.3 7.1 4.2 NO 13.8 9.1 4.7 NO 

Baldwin 52.0 43.6 8.4 YES 31.0 44.3 -13.3 NO 15.9 11.1 4.8 YES 0.8 0.0 0.8 YES 0.3 1.0 -0.7 YES 
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Name HI AI Diff w/in SD HI AI Diff w/in SD HI AI Diff 
w/in 
SD HI AI Diff 
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w/in 
SD 

Baraboo 41.3 55.2 -13.9 NO 23.7 30.2 -6.5 YES 34.2 12.5 21.8 NO 0.8 1.0 -0.2 YES 0.0 1.1 -1.1 YES 

Barneveld 57.2 54.0 3.3 YES 16.1 20.0 -3.9 YES 26.7 26.1 0.6 YES 0.0 0.0 0.0 YES 0.0 0.0 0.0 YES 

Bayfield 14.4 29.8 -15.4 NO 21.5 24.2 -2.7 YES 63.3 46.0 17.3 NO 0.8 0.0 0.8 YES 0.0 0.0 0.0 YES 

Bayside 15.6 13.9 1.7 YES 25.2 19.2 6.0 YES 58.3 66.4 -8.1 YES 0.6 0.1 0.5 YES 0.3 0.4 -0.1 YES 

Beaver Dam 29.9 31.1 -1.2 YES 34.9 31.7 3.2 YES 16.6 17.0 -0.4 YES 17.2 16.9 0.3 YES 1.4 3.4 -2.0 YES 

Belgium 60.7 58.5 2.2 YES 21.9 13.7 8.2 NO 13.7 26.2 -12.5 NO 0.8 0.0 0.8 YES 2.9 1.6 1.3 YES 

Bell Center 31.6 32.6 -1.0 YES 1.3 5.5 -4.2 YES 62.6 54.9 7.8 YES 1.5 0.8 0.7 YES 3.0 6.4 -3.4 YES 

Belleville 41.6 35.8 5.8 YES 22.9 26.8 -3.9 YES 25.8 25.8 0.0 YES 6.6 1.1 5.5 NO 3.1 10.5 -7.4 NO 

Bellevue 53.5 42.7 10.8 YES 22.4 30.0 -7.6 YES 21.0 24.2 -3.2 YES 2.1 0.6 1.5 YES 1.0 2.7 -1.7 YES 

Belmont 60.4 63.6 -3.2 YES 26.7 33.4 -6.7 YES 12.9 2.5 10.4 NO 0.0 0.0 0.0 YES 0.0 0.6 -0.6 YES 

Beloit 38.9 38.5 0.4 YES 29.2 37.8 -8.6 NO 29.9 21.5 8.4 YES 1.5 1.9 -0.4 YES 0.5 0.4 0.2 YES 

Berlin 42.5 38.6 3.9 YES 17.9 19.9 -2.0 YES 29.7 30.0 -0.3 YES 5.5 2.9 2.6 NO 4.4 8.5 -4.1 NO 

Big Falls 21.1 24.3 -3.2 YES 7.0 6.5 0.5 YES 64.7 63.7 1.0 YES 6.9 5.5 1.4 YES 0.3 0.0 0.3 YES 

Birnamwood 46.6 52.8 -6.2 YES 10.7 12.2 -1.5 YES 41.3 33.1 8.2 YES 0.7 0.1 0.6 YES 0.7 1.7 -1.0 YES 

Biron 23.6 25.8 -2.2 YES 8.8 15.5 -6.7 YES 39.3 26.0 13.3 NO 28.3 31.2 -2.9 NO 0.0 1.5 -1.5 YES 

Blair 42.6 53.1 -10.5 YES 25.8 26.1 -0.3 YES 19.4 11.8 7.6 YES 5.4 7.3 -1.9 YES 6.8 1.6 5.2 NO 

Blanchardville 34.5 39.4 -4.9 YES 26.1 30.1 -4.0 YES 28.8 28.6 0.2 YES 1.0 1.6 -0.6 YES 9.6 0.3 9.3 NO 

Bloomfield 55.4 29.9 25.5 NO 8.7 27.2 -18.5 NO 26.7 26.0 0.7 YES 1.5 0.1 1.4 YES 7.7 16.8 -9.1 NO 

Bloomington 72.5 72.0 0.5 YES 13.2 16.8 -3.6 YES 13.6 10.8 2.8 YES 0.7 0.0 0.7 YES 0.0 0.4 -0.4 YES 

Blue River 61.1 64.9 -3.8 YES 17.7 21.3 -3.6 YES 20.9 12.0 8.9 YES 0.3 0.4 -0.1 YES 0.0 1.4 -1.4 YES 

Boaz 62.6 53.5 9.1 YES 11.8 23.2 -11.4 NO 23.0 21.9 1.2 YES 2.1 0.1 2.0 YES 0.5 1.3 -0.8 YES 

Bonduel 52.4 52.4 0.0 YES 18.6 19.2 -0.6 YES 28.9 27.6 1.4 YES 0.0 0.1 -0.1 YES 0.1 0.8 -0.7 YES 

Boyd 80.4 29.2 51.2 NO 11.2 67.1 -55.9 NO 8.4 1.2 7.2 YES 0.0 0.0 0.0 YES 0.0 2.4 -2.4 YES 

Brillion 46.1 46.7 -0.6 YES 26.0 31.5 -5.5 YES 21.7 17.2 4.5 YES 1.1 1.5 -0.4 YES 5.1 3.2 1.9 YES  

Bristol 62.9 46.0 16.9 NO 7.2 17.4 -10.2 NO 25.0 26.8 -1.8 YES 1.7 0.9 0.8 YES 3.2 8.8 -5.6 NO 
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Name HI AI Diff w/in SD HI AI Diff w/in SD HI AI Diff 
w/in 
SD HI AI Diff 

w/in 
SD HI AI Diff 

w/in 
SD 

Brodhead 29.9 35.6 -5.7 YES 39.0 46.0 -7.0 YES 28.8 16.0 12.8 NO 1.5 1.2 0.3 YES 0.8 1.3 -0.5 YES 

Brokaw 25.5 25.8 -0.3 YES 15.4 14.7 0.8 YES 49.7 46.6 3.1 YES 8.8 12.4 -3.6 NO 0.6 0.6 0.0 YES 

Brookfield 26.0 27.3 -1.3 YES 28.3 21.2 7.1 YES 38.1 44.9 -6.8 YES 1.3 0.3 1.0 YES 6.3 6.4 -0.1 YES 

Brooklyn 63.9 50.3 13.6 NO 14.4 26.9 -12.5 NO 15.9 16.5 -0.6 YES 3.7 0.0 3.7 NO 2.1 6.3 -4.2 NO 

Brown Deer 26.5 30.9 -4.4 YES 36.4 35.6 0.8 YES 36.0 32.6 3.4 YES 0.9 0.4 0.5 YES 0.2 0.5 -0.3 YES 

Brownsville 45.8 39.1 6.7 YES 42.5 49.1 -6.6 YES 11.7 10.5 1.2 YES 0.0 0.0 0.0 YES 0.0 1.3 -1.3 YES 

Browntown 58.5 36.6 21.9 NO 17.3 17.6 -0.3 YES 22.6 14.8 7.8 YES 0.5 0.7 -0.2 YES 1.1 30.2 
-

29.1 NO 

Bruce 51.1 46.6 4.5 YES 8.7 20.3 -11.6 NO 35.5 25.8 9.7 NO 4.1 2.8 1.4 YES 0.6 4.5 -3.9 NO 

Buffalo City 18.5 19.4 -0.9 YES 4.2 8.3 -4.1 YES 14.3 5.2 9.1 YES 56.4 60.7 -4.3 NO 6.6 6.5 0.1 YES 

Burlington 34.8 27.1 7.7 YES 29.6 35.8 -6.2 YES 31.0 30.4 0.6 YES 3.4 3.0 0.4 YES 1.2 3.6 -2.4 YES 

Butler 17.4 19.2 -1.8 YES 54.4 53.8 0.6 YES 27.3 26.4 0.9 YES 0.9 0.4 0.5 YES 0.0 0.2 -0.2 YES 

Butternut 32.6 47.7 -15.1 NO 12.3 13.1 -0.8 YES 53.5 37.4 16.1 NO 1.2 0.4 0.8 YES 0.4 1.4 -1.0 YES 

Cadott 45.4 59.2 -13.8 NO 13.8 29.9 -16.1 NO 33.4 2.7 30.7 NO 2.5 1.9 0.6 YES 4.9 6.3 -1.4 YES 

Cambridge 47.8 46.4 1.4 YES 20.5 22.5 -2.0 YES 30.3 26.5 3.8 YES 1.3 3.0 -1.7 YES 0.1 1.6 -1.5 YES 

Cameron 47.3 37.0 10.3 YES 17.4 31.2 -13.8 NO 28.6 21.0 7.6 YES 4.7 2.5 2.2 NO 2.0 8.4 -6.4 NO 

Camp Douglas 22.7 40.0 -17.3 NO 19.9 28.8 -8.9 NO 57.4 30.8 26.6 NO 0.0 0.0 0.0 YES 0.0 0.4 -0.4 YES 

Cashton 54.6 49.3 5.3 YES 30.0 48.4 -18.4 NO 12.9 2.2 10.7 NO 0.2 0.1 0.2 YES 2.3 0.0 2.3 YES 

Cecil 68.7 59.0 9.7 YES 9.9 12.2 -2.3 YES 18.8 24.6 -5.8 YES 2.0 0.6 1.4 YES 0.6 3.6 -3.0 YES 

Cedar Grove 60.9 53.7 7.2 YES 17.2 14.2 3.0 YES 17.0 28.1 -11.1 NO 1.3 0.5 0.8 YES 3.6 3.6 0.0 YES 

Chaseburg 24.8 24.5 0.3 YES 7.7 10.2 -2.5 YES 65.1 61.1 4.0 YES 0.5 0.6 -0.1 YES 1.9 3.7 -1.8 YES 

Chenequa 17.5 17.5 0.0 YES 5.7 4.6 1.1 YES 49.1 51.8 -2.7 YES 27.4 1.2 26.2 NO 0.3 24.9 
-

24.6 NO 

Chippewa Falls 28.3 41.0 -12.7 NO 27.1 36.1 -9.0 NO 39.1 16.8 22.4 NO 5.3 5.6 -0.3 YES 0.2 0.6 -0.4 
 

YES  
 
 
Cleveland 

 
47.1 

 
39.7 

 
7.4 

 
YES 

 
17.9 

 
23.6 

 
-5.7 

 
YES 

 
34.5 

 
35.8 

 
-1.3 

 
YES 

 
0.5 

 
0.1 

 
0.4 

 
YES 

 
0.0 

 
0.9 

 
-0.9 

 
YES 
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Name HI AI Diff w/in SD HI AI Diff w/in SD HI AI Diff 
w/in 
SD HI AI Diff 

w/in 
SD HI AI Diff 

w/in 
SD 

Clyman 54.4 23.2 31.2 NO 27.7 58.5 -30.8 NO 15.9 18.3 -2.4 YES 0.0 0.0 0.0 YES 2.0 0.0 2.0 YES 

Cobb 73.0 77.3 -4.3 YES 17.4 21.2 -3.8 YES 8.1 1.5 6.6 YES 1.4 0.0 1.4 YES 0.1 0.0 0.1 YES 

Cochrane 50.1 51.8 -1.7 YES 22.4 25.9 -3.5 YES 25.1 9.0 16.1 NO 1.9 0.1 1.8 YES 0.5 13.2 
-

12.7 NO 

Colby 53.9 51.0 2.9 YES 23.7 36.1 -12.4 NO 20.2 10.3 9.9 NO 0.1 0.3 -0.2 YES 2.1 2.2 -0.1 YES 

Coloma 46.7 59.9 -13.2 NO 15.9 17.4 -1.5 YES 36.8 22.7 14.1 NO 0.0 0.0 0.0 YES 0.6 0.0 0.6 YES 

Combined 
Locks 21.9 21.4 0.5 YES 32.1 31.7 0.4 YES 37.1 37.2 -0.1 YES 8.5 9.7 -1.2 YES 0.4 0.0 0.4 YES 

Cornell 26.7 57.4 -30.7 NO 11.1 15.9 -4.8 YES 48.1 13.2 34.9 NO 13.3 11.7 1.6 YES 0.8 1.9 -1.1 YES 

Cottage Grove 50.3 41.9 8.4 YES 25.2 30.0 -4.8 YES 23.1 24.6 -1.5 YES 1.1 0.1 1.0 YES 0.3 3.5 -3.2 YES 

Couderay 34.3 67.4 -33.1 NO 4.4 7.4 -3.0 YES 58.0 21.5 36.5 NO 1.3 3.6 -2.3 NO 2.0 0.1 1.9 YES 

Crandon 17.7 16.0 1.7 YES 10.4 10.0 0.4 YES 56.2 58.0 -1.8 YES 15.3 13.6 1.7 YES 0.4 2.5 -2.1 YES 

Crivitz 28.1 32.5 -4.4 YES 23.3 24.0 -0.7 YES 46.4 40.0 6.5 YES 2.0 3.3 -1.3 YES 0.2 0.2 0.0 YES 

Cross Plains 30.9 43.0 -12.1 NO 28.5 32.4 -3.9 YES 39.5 24.1 15.4 NO 0.3 0.0 0.3 YES 0.8 0.5 0.3 YES 

Cuba City 50.6 54.0 -3.4 YES 39.2 39.4 -0.2 YES 10.2 6.6 3.6 YES 0.0 0.0 0.0 YES 0.0 0.0 0.0 YES 

Cumberland 27.9 37.5 -9.6 YES 13.9 24.1 -10.2 NO 40.9 19.7 21.2 NO 15.7 12.8 2.9 NO 1.6 6.0 -4.4 NO 

Curtiss 55.7 47.8 7.9 YES 17.6 36.1 -18.5 NO 26.6 11.7 14.9 NO 0.0 0.1 -0.1 YES 0.1 4.3 -4.2 NO 

Dallas 48.6 38.1 10.5 YES 6.7 27.7 -21.0 NO 38.6 26.4 12.2 NO 3.7 1.6 2.1 NO 2.4 6.3 -3.9 NO 

Dane 73.1 77.6 -4.5 YES 18.2 17.0 1.2 YES 8.7 4.7 4.0 YES 0.0 0.2 -0.2 YES 0.0 0.5 -0.5 YES 

Darien 58.9 39.4 19.5 NO 23.8 35.3 -11.5 NO 16.3 23.6 -7.3 YES 0.4 0.0 0.4 YES 0.6 1.8 -1.2 YES 

Darlington 32.8 62.0 -29.2 NO 36.9 30.9 6.0 YES 29.6 6.2 23.4 NO 0.2 0.9 -0.7 YES 0.5 0.0 0.5 YES 

De Pere 40.2 30.0 10.3 YES 32.5 42.3 -9.8 NO 20.0 20.5 -0.5 YES 6.9 6.0 0.9 YES 0.4 1.1 -0.7 YES 

De Soto 13.3 23.8 -10.5 YES 10.3 9.9 0.4 YES 74.6 64.7 9.9 NO 1.7 0.3 1.4 YES 0.1 1.3 -1.2 YES 

Deer Park 56.6 53.3 3.3 YES 7.1 17.3 -10.2 NO 29.1 22.9 6.2 YES 2.3 0.2 2.1 NO 4.9 6.4 -1.5 YES 

Deerfield 54.6 45.2 9.4 YES 21.0 21.0 0.0 YES 23.0 25.9 -2.9 YES 0.8 0.1 0.7 YES 0.6 7.8 -7.2 NO 

DeForest 50.5 46.0 4.5 YES 24.4 30.4 -6.0 YES 18.0 17.9 0.1 YES 1.3 0.2 1.1 YES 5.8 5.5 0.3 YES 
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Name HI AI Diff w/in SD HI AI Diff w/in SD HI AI Diff 
w/in 
SD HI AI Diff 

w/in 
SD HI AI Diff 

w/in 
SD 

Delavan 46.1 49.9 -3.8 YES 22.1 26.0 -3.9 YES 20.8 14.4 6.4 YES 7.6 0.3 7.3 NO 3.4 9.4 -6.0 NO 

Denmark 60.0 47.5 12.5 NO 24.5 31.4 -6.9 YES 15.0 20.3 -5.3 YES 0.1 0.0 0.1 YES 0.4 0.8 -0.4 YES 

Dickeyville 69.0 66.7 2.3 YES 19.9 28.0 -8.1 NO 11.1 5.3 5.8 YES 0.0 0.0 0.0 YES 0.0 0.0 0.0 YES 

Dodgeville 56.2 53.8 2.4 YES 29.6 33.4 -3.8 YES 14.1 12.8 1.3 YES 0.0 0.0 0.0 YES 0.1 0.0 0.1 YES 

Downing 71.3 41.9 29.4 NO 4.6 32.0 -27.4 NO 23.9 18.6 5.3 YES 0.1 0.0 0.1 YES 0.1 7.6 -7.5 NO 

Dresser 34.3 45.2 -10.9 YES 27.1 31.9 -4.8 YES 35.9 21.0 14.9 NO 1.2 1.5 -0.3 YES 1.5 0.5 1.0 YES 

Eagle River 37.9 43.4 -5.5 YES 20.5 25.3 -4.8 YES 36.2 25.5 10.8 NO 5.2 5.6 -0.4 YES 0.2 0.4 -0.2 YES 

Eastman 67.2 63.9 3.4 YES 6.2 10.4 -4.2 YES 26.0 25.8 0.3 YES 0.0 0.0 0.0 YES 0.6 0.0 0.6 YES 

Eau Claire 34.4 34.8 -0.4 YES 28.6 35.5 -6.9 YES 30.7 23.6 7.1 YES 5.7 5.6 0.1 YES 0.6 0.6 0.0 YES 

Eden 37.8 43.8 -6.0 YES 33.1 29.5 3.6 YES 22.8 18.6 4.2 YES 2.6 1.7 1.0 YES 3.7 6.5 -2.8 YES 

Egg Harbor 34.5 48.0 -13.5 NO 13.4 16.9 -3.5 YES 51.3 34.6 16.7 NO 0.8 0.0 0.8 YES 0.0 0.4 -0.4 YES 

Eland 37.9 39.4 -1.5 YES 5.1 3.4 1.7 YES 52.8 55.9 -3.1 YES 0.0 0.1 -0.1 YES 4.2 1.2 3.0 YES 

Elderon 51.7 68.3 -16.6 NO 8.8 6.0 2.8 YES 36.2 24.3 11.9 NO 1.0 0.4 0.6 YES 2.3 1.0 1.3 YES 

Eleva 45.5 56.1 -10.6 YES 23.4 25.2 -1.8 YES 27.0 12.8 14.2 NO 1.8 2.9 -1.1 YES 2.3 3.0 -0.7 YES 

Elk Mound 57.7 40.0 17.7 NO 9.1 31.4 -22.3 NO 32.7 26.3 6.4 YES 0.0 0.1 -0.1 YES 0.5 2.2 -1.7 YES 

Ellsworth 44.6 47.6 -3.0 YES 18.1 17.7 0.5 YES 37.1 34.3 2.8 YES 0.0 0.1 -0.1 YES 0.2 0.3 -0.1 YES 

Elm Grove 15.4 19.3 -3.9 YES 26.2 21.3 4.9 YES 57.2 58.6 -1.4 YES 1.2 0.1 1.1 YES 0.0 0.8 -0.8 YES 

Elmwood Park 28.0 20.8 7.2 YES 31.5 21.4 10.2 NO 39.0 56.6 -17.6 NO 1.5 0.2 1.3 YES 0.0 1.1 -1.1 YES 

Embarrass 51.8 42.8 9.0 YES 10.4 24.2 -13.8 NO 36.6 28.9 7.7 YES 1.0 1.8 -0.8 YES 0.2 2.4 -2.2 YES 

Endeavor 47.5 47.5 0.0 YES 18.2 18.5 -0.3 YES 27.6 22.3 5.3 YES 6.3 0.2 6.1 NO 0.4 11.5 
-

11.1 NO 

Ephraim 19.2 51.2 -32.0 NO 7.4 10.3 -2.9 YES 73.4 38.5 34.9 NO 0.0 0.0 0.0 YES 0.0 0.0 0.0 YES 

Ettrick 62.9 57.7 5.3 YES 15.7 25.3 -9.6 NO 20.2 14.9 5.4 YES 0.5 0.0 0.5 YES 0.7 2.2 -1.5 YES 

Evansville 49.7 58.2 -8.5 YES 25.2 29.9 -4.7 YES 20.9 9.6 11.3 NO 1.5 0.8 0.7 YES 2.7 1.5 1.2 YES 

Exeland 27.4 45.0 -17.6 NO 6.9 10.7 -3.8 YES 64.2 42.3 21.9 NO 1.5 0.2 1.3 YES 0.0 1.9 -1.9 YES 
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Fall River 60.3 43.9 16.4 NO 18.2 28.1 -9.9 NO 18.3 18.1 0.2 YES 2.1 1.5 0.6 YES 1.1 8.4 -7.3 NO 

Fennimore 59.3 60.4 -1.1 YES 29.6 28.4 1.2 YES 10.9 11.2 -0.3 YES 0.2 0.0 0.2 YES 0.0 0.0 0.0 YES 

Ferryville 16.3 16.8 -0.5 YES 5.3 8.6 -3.3 YES 72.3 71.3 1.0 YES 4.3 0.3 4.0 NO 1.8 3.0 -1.2 YES 

Fitchburg 62.1 55.7 6.4 YES 14.8 16.7 -1.9 YES 18.8 22.4 -3.6 YES 0.7 0.1 0.7 YES 3.6 5.2 -1.6 YES 

Fond du Lac 32.5 41.6 -9.1 YES 41.9 37.3 4.6 YES 22.5 16.9 5.6 YES 1.8 1.1 0.7 YES 1.3 3.2 -1.9 YES 

Fontana 14.6 22.7 -8.1 YES 10.4 13.4 -3.0 YES 51.5 37.8 13.7 NO 23.1 25.3 -2.2 NO 0.4 0.9 -0.5 YES 

Footville 69.5 76.2 -6.7 YES 13.5 16.2 -2.7 YES 17.0 7.5 9.5 NO 0.0 0.0 0.0 YES 0.0 0.1 -0.1 YES 

Fort Atkinson 36.4 31.9 4.5 YES 32.2 33.4 -1.2 YES 26.5 29.8 -3.3 YES 1.8 2.1 -0.3 YES 3.1 2.8 0.3 YES 

Fox Lake 58.7 35.4 23.3 NO 19.7 28.7 -9.0 NO 13.4 21.6 -8.2 YES 2.8 2.9 0.0 YES 5.4 11.4 -6.0 NO 

Fox Point 13.1 14.4 -1.3 YES 23.2 21.4 1.8 YES 63.3 64.1 -0.8 YES 0.3 0.0 0.3 YES 0.1 0.2 -0.1 YES 

Francis Creek 60.8 53.3 7.5 YES 17.2 13.5 3.7 YES 21.5 32.2 -10.7 NO 0.3 0.0 0.3 YES 0.2 1.0 -0.8 YES 

Franklin 50.4 32.5 17.9 NO 20.8 25.7 -4.9 YES 26.5 36.7 -10.2 NO 1.4 0.4 1.0 YES 0.9 4.7 -3.8 NO 

Frederic 30.6 41.4 -10.8 YES 15.9 28.4 -12.5 NO 48.1 24.0 24.1 NO 4.7 4.0 0.7 YES 0.7 2.2 -1.5 YES 

Fredonia 57.4 37.5 19.9 NO 17.3 30.6 -13.3 NO 23.7 29.5 -5.8 YES 1.3 0.1 1.2 YES 0.3 2.2 -1.9 YES 

Fremont 36.1 33.7 2.4 YES 14.8 17.0 -2.2 YES 35.9 35.1 0.8 YES 11.9 9.4 2.5 NO 1.3 4.7 -3.4 YES 

Friesland 77.4 72.8 4.6 YES 13.0 18.2 -5.2 YES 8.5 8.9 -0.4 YES 1.1 0.1 1.0 YES 0.0 0.0 0.0 YES 

Gays Mills 22.5 31.1 -8.6 YES 7.2 6.9 0.3 YES 67.5 55.4 12.1 NO 2.0 1.2 0.8 YES 0.8 5.4 -4.6 NO 

Genoa 21.4 34.0 -12.6 NO 21.0 29.9 -8.9 NO 54.2 33.5 20.7 NO 1.3 1.3 0.0 YES 2.1 1.3 0.8 YES 

Germantown 48.7 45.0 3.7 YES 13.4 17.3 -3.9 YES 34.9 32.2 2.8 YES 0.8 0.3 0.5 YES 2.2 5.2 -3.0 YES 

Gillett 26.8 30.4 -3.6 YES 23.6 23.1 0.5 YES 48.9 44.9 4.0 YES 0.4 0.6 -0.2 YES 0.3 1.0 -0.7 YES 

Gilman 66.2 54.7 11.5 NO 6.3 28.8 -22.5 NO 25.9 9.3 16.6 NO 1.3 2.3 -1.0 YES 0.3 5.0 -4.7 NO 

Glendale 16.4 19.7 -3.3 YES 37.5 38.3 -0.8 YES 41.8 37.1 4.7 YES 3.7 3.5 0.2 YES 0.6 1.4 -0.8 YES 

Grafton 36.1 30.4 5.7 YES 34.5 37.9 -3.4 YES 27.2 28.7 -1.5 YES 1.8 1.1 0.7 YES 0.4 1.9 -1.5 YES 

Granton 48.3 54.7 -6.4 YES 19.9 26.5 -6.6 YES 30.2 14.7 15.5 NO 1.1 0.3 0.9 YES 0.5 3.8 -3.3 YES 

Grantsburg 37.2 47.0 -9.8 YES 16.2 28.0 -11.8 NO 45.3 22.3 23.1 NO 0.8 1.8 -1.0 YES 0.5 1.0 -0.5 YES 



 

- 73 - 

Table C-1. Artificial Intelligence (AI) and Human Intelligence (HI) Land classifications comparisons                
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Name HI AI Diff w/in SD HI AI Diff w/in SD HI AI Diff 
w/in 
SD HI AI Diff 

w/in 
SD HI AI Diff 

w/in 
SD 

Gratiot 61.4 52.8 8.6 YES 12.9 35.9 -23.0 NO 25.1 11.1 14.0 NO 0.3 0.2 0.1 YES 0.3 0.0 0.3 YES 

Green Bay 33.2 28.1 5.1 YES 30.2 35.4 -5.2 YES 33.9 32.9 1.0 YES 2.2 2.0 0.2 YES 0.5 1.7 -1.2 YES 

Green Lake 38.2 29.1 9.2 YES 16.1 22.5 -6.4 YES 32.7 35.2 -2.5 YES 11.7 12.8 -1.1 YES 1.3 0.4 0.9 YES 

Greendale 17.6 20.1 -2.5 YES 35.3 27.0 8.3 NO 46.2 51.8 -5.6 YES 0.3 0.3 0.0 YES 0.6 0.9 -0.3 YES 

Greenwood 43.0 55.4 -12.4 NO 11.8 28.5 -16.7 NO 42.8 11.1 31.7 NO 2.3 2.7 -0.4 YES 0.1 2.3 -2.2 YES 

Hales Corners 21.2 20.2 1.0 YES 33.4 26.7 6.7 YES 44.3 52.4 -8.1 YES 0.7 0.2 0.5 YES 0.4 0.6 -0.2 YES 

Hammond 62.8 49.4 13.4 NO 20.7 36.3 -15.6 NO 14.7 13.8 0.9 YES 0.4 0.1 0.3 YES 1.4 0.4 1.0 YES 

Harrison 67.2 61.8 5.4 YES 10.5 15.7 -5.2 YES 21.2 21.0 0.2 YES 0.5 0.1 0.4 YES 0.6 1.3 -0.7 YES 

Hartland 32.1 38.0 -5.9 YES 32.7 28.1 4.6 YES 30.1 29.1 1.0 YES 0.8 0.2 0.6 YES 4.3 4.6 -0.3 YES 

Hatley 40.6 51.4 -10.8 YES 16.1 11.6 4.5 YES 42.3 34.9 7.4 YES 0.9 1.7 -0.8 YES 0.1 0.5 -0.4 YES 

Hawkins 36.1 52.4 -16.3 NO 10.5 25.5 -15.0 NO 49.6 17.8 31.8 NO 2.1 0.6 1.5 YES 1.7 3.7 -2.0 YES 

Hazel Green 62.1 63.0 -0.9 YES 20.2 21.1 -0.9 YES 17.7 15.8 1.9 YES 0.0 0.0 0.0 YES 0.0 0.0 0.0 YES 

Hilbert 70.3 57.0 13.3 NO 18.8 28.4 -9.6 NO 10.4 12.2 -1.8 YES 0.3 0.0 0.3 YES 0.2 2.3 -2.1 YES 

Hillsboro 51.1 54.7 -3.6 YES 21.4 31.7 -10.3 NO 21.5 7.4 14.1 NO 4.6 2.5 2.1 NO 1.4 3.7 -2.3 YES 

Hixton 46.9 51.3 -4.4 YES 15.7 24.7 -9.0 NO 34.8 22.7 12.1 NO 0.5 0.1 0.4 YES 2.1 1.2 0.9 YES 

Horicon 38.6 41.3 -2.7 YES 24.9 27.6 -2.7 YES 23.9 16.3 7.6 YES 5.7 4.7 1.0 YES 6.9 10.2 -3.3 YES 

Hortonville 52.7 42.7 10.1 YES 15.9 25.9 -10.0 NO 26.5 28.1 -1.6 YES 4.0 2.0 2.0 YES 0.9 1.4 -0.5 YES 

Howard 38.7 32.9 5.8 YES 20.6 24.6 -4.0 YES 36.3 36.4 -0.1 YES 1.6 0.8 0.8 YES 2.8 5.3 -2.5 YES 

Hudson 24.3 34.7 -10.4 YES 43.1 42.2 0.9 YES 30.8 21.3 9.5 NO 1.3 1.2 0.1 YES 0.5 0.6 -0.1 YES 

Hustisford 42.6 45.8 -3.2 YES 24.7 28.7 -4.0 YES 20.5 12.1 8.4 YES 11.7 11.7 0.0 YES 0.5 1.7 -1.2 YES 

Hustler 70.9 62.3 8.6 YES 14.4 33.8 -19.4 NO 13.3 2.2 11.1 NO 0.0 0.0 0.0 YES 1.4 1.6 -0.2 YES 

Independence 38.0 59.3 -21.3 NO 29.9 26.6 3.3 YES 25.5 7.5 18.0 NO 2.3 4.9 -2.6 NO 4.3 1.6 2.7 YES 

Ingram 37.1 47.6 -10.5 YES 7.1 14.7 -7.6 YES 54.1 37.2 16.9 NO 0.7 0.0 0.7 YES 1.0 0.6 0.4 YES 

Jackson 38.0 43.5 -5.5 YES 36.2 34.2 2.0 YES 24.3 18.9 5.4 YES 1.1 0.3 0.9 YES 0.4 3.1 -2.7 YES 

Janesville 39.4 35.2 4.3 YES 33.0 39.1 -6.1 YES 25.6 23.3 2.3 YES 1.8 2.1 -0.3 YES 0.2 0.3 -0.1 YES 
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Name HI AI Diff w/in SD HI AI Diff w/in SD HI AI Diff 
w/in 
SD HI AI Diff 

w/in 
SD HI AI Diff 

w/in 
SD 

Jefferson 54.6 40.8 13.9 NO 23.8 31.1 -7.3 YES 16.3 22.9 -6.6 YES 3.7 3.1 0.6 YES 1.6 2.2 -0.6 YES 

Johnson Creek 52.0 44.5 7.5 YES 27.7 28.8 -1.1 YES 17.3 19.7 -2.4 YES 0.3 0.3 0.0 YES 2.7 6.7 -4.0 NO 

Juneau 51.2 33.2 18.0 NO 30.5 43.0 -12.5 NO 17.5 22.0 -4.5 YES 0.1 0.1 0.0 YES 0.7 1.8 -1.1 YES 

Kellnersville 73.3 38.5 34.8 NO 14.1 47.9 -33.8 NO 12.6 13.3 -0.7 YES 0.0 0.1 -0.1 YES 0.0 0.3 -0.3 YES 

Kendall 61.3 60.7 0.6 YES 15.1 30.5 -15.4 NO 23.0 8.7 14.3 NO 0.0 0.1 -0.1 YES 0.6 0.0 0.6 YES 

Kennan 47.2 57.7 -10.5 YES 6.4 10.2 -3.8 YES 43.1 27.7 15.4 NO 0.2 0.0 0.2 YES 3.1 4.4 -1.3 YES 

Kenosha 26.5 34.0 -7.5 YES 46.1 37.3 8.8 NO 25.2 26.1 -0.9 YES 1.4 0.3 1.1 YES 0.8 2.3 -1.5 YES 

Kewaskum 36.9 34.9 2.0 YES 27.8 31.0 -3.2 YES 32.0 28.0 4.0 YES 2.1 1.3 0.8 YES 1.2 4.9 -3.7 NO 

Kewaunee 43.7 41.4 2.3 YES 24.6 36.1 -11.5 NO 23.1 12.2 10.9 NO 6.5 7.0 -0.5 YES 2.1 3.4 -1.3 YES 

Kimberly 31.0 23.2 7.8 YES 45.1 50.7 -5.6 YES 19.0 21.5 -2.5 YES 4.7 4.5 0.2 YES 0.2 0.1 0.1 YES 

Kohler 44.2 35.7 8.6 YES 18.1 24.1 -6.0 YES 33.5 36.6 -3.1 YES 4.1 2.8 1.3 YES 0.1 0.9 -0.8 YES 

Kronenwetter 21.9 23.9 -2.0 YES 7.3 5.5 1.8 YES 67.5 66.9 0.6 YES 1.6 0.5 1.1 YES 1.7 3.2 -1.5 YES 

La Crosse 20.2 28.0 -7.8 YES 36.0 39.8 -3.8 YES 28.9 16.6 12.3 NO 10.7 9.5 1.2 YES 4.2 6.2 -2.0 YES 

La Farge 54.3 56.8 -2.5 YES 16.1 20.5 -4.4 YES 27.1 16.2 10.9 NO 1.6 2.4 -0.8 YES 0.9 4.2 -3.3 YES 

Ladysmith 28.2 33.0 -4.8 YES 20.5 26.6 -6.1 YES 42.9 30.7 12.2 NO 8.0 7.4 0.6 YES 0.4 2.4 -2.0 YES 

Lake Geneva 29.9 35.0 -5.1 YES 19.3 22.4 -3.1 YES 38.0 28.3 9.7 NO 12.3 11.0 1.3 YES 0.5 3.3 -2.8 YES 

Lake Mills 51.1 41.3 9.8 YES 24.3 24.1 0.2 YES 20.6 29.7 -9.1 YES 0.7 1.2 -0.5 YES 3.3 3.7 -0.4 YES 

Lancaster 55.7 62.2 -6.5 YES 25.8 22.4 3.4 YES 17.8 15.3 2.5 YES 0.4 0.0 0.4 YES 0.3 0.1 0.2 YES 

Lena 65.2 58.7 6.5 YES 16.5 21.0 -4.5 YES 15.9 16.4 -0.5 YES 0.7 0.0 0.7 YES 1.7 3.8 -2.1 YES 

Linden 66.3 64.2 2.2 YES 14.3 20.1 -5.8 YES 18.9 14.1 4.8 YES 0.0 0.0 0.0 YES 0.5 1.7 -1.2 YES 

Little Chute 35.8 33.8 2.0 YES 38.1 42.2 -4.1 YES 19.7 18.8 0.9 YES 5.4 5.1 0.3 YES 1.0 0.1 0.9 YES 

Livingston 80.4 81.8 -1.4 YES 13.4 13.0 0.4 YES 6.0 4.6 1.4 YES 0.1 0.0 0.1 YES 0.1 0.6 -0.5 YES 

Loganville 54.2 39.9 14.3 NO 23.5 40.6 -17.1 NO 20.8 14.5 6.3 YES 0.9 0.0 0.9 YES 0.6 5.0 -4.4 NO 

Lohrville 36.9 26.1 10.8 YES 8.9 11.0 -2.1 YES 52.7 52.9 -0.1 YES 1.5 0.6 0.9 YES 0.0 9.5 -9.5 NO 
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Lone Rock 8.9 36.9 -28.0 NO 44.5 23.1 21.4 NO 44.1 38.7 5.4 YES 1.0 0.1 0.9 YES 1.5 1.2 0.3 YES 

Lublin 35.6 55.6 -20.0 NO 5.3 8.5 -3.2 YES 58.0 23.1 34.9 NO 0.5 0.1 0.4 YES 0.6 12.8 
-

12.2 NO 

Luxemburg 54.3 54.4 -0.1 YES 25.7 29.1 -3.4 YES 18.7 16.0 2.7 YES 1.1 0.0 1.1 YES 0.2 0.5 -0.3 YES 

Lyndon Station 21.6 21.6 0.0 YES 15.1 18.9 -3.8 YES 59.9 56.5 3.4 YES 0.3 0.6 -0.3 YES 3.1 2.4 0.7 YES 

Lynxville 22.6 26.5 -3.9 YES 5.6 9.2 -3.6 YES 68.1 61.8 6.3 YES 3.1 1.0 2.2 NO 0.6 1.5 -0.9 YES 

Madison 27.0 27.7 -0.7 YES 32.6 28.5 4.1 YES 17.0 23.1 -6.1 YES 19.4 16.4 3.0 NO 4.0 4.3 -0.3 YES 

Maiden Rock 31.3 26.9 4.4 YES 7.8 6.5 1.3 YES 60.7 65.8 -5.1 YES 0.1 0.2 -0.1 YES 0.1 0.6 -0.5 YES 

Manawa 48.1 27.6 20.5 NO 21.9 42.9 -21.0 NO 22.5 21.4 1.2 YES 6.9 7.3 -0.3 YES 0.6 0.9 -0.3 YES 

Manitowoc 41.3 35.5 5.8 YES 32.4 35.5 -3.1 YES 22.7 25.6 -2.9 YES 1.9 1.6 0.3 YES 1.7 1.8 -0.1 YES 

Maple Bluff 24.0 25.7 -1.7 YES 24.7 23.9 0.8 YES 47.0 49.5 -2.5 YES 3.5 0.3 3.2 NO 0.8 0.7 0.1 YES 

Marathon City 38.8 40.6 -1.8 YES 24.0 31.9 -7.9 NO 31.2 23.2 8.0 YES 6.0 3.3 2.7 NO 0.0 1.1 -1.1 YES 

Maribel 77.9 44.1 33.8 NO 9.0 43.5 -34.5 NO 12.8 11.9 1.0 YES 0.0 0.2 -0.2 YES 0.3 0.4 -0.1 YES 

Marinette 26.5 31.2 -4.7 YES 33.0 39.7 -6.7 YES 32.1 19.3 12.8 NO 6.7 6.4 0.3 YES 1.7 3.4 -1.7 YES 

Marquette 52.4 43.1 9.3 YES 12.5 14.9 -2.4 YES 34.8 32.7 2.1 YES 0.2 0.0 0.2 YES 0.1 9.3 -9.2 NO 

Marshall 51.6 34.0 17.7 NO 23.0 33.7 -10.7 NO 19.4 19.3 0.1 YES 5.4 0.7 4.8 NO 0.6 12.4 
-

11.8 NO 

Marshfield 39.4 46.0 -6.6 YES 36.1 37.1 -0.9 YES 22.2 14.2 8.0 YES 0.6 0.3 0.3 YES 1.7 2.4 -0.7 YES 

Mason 55.9 62.5 -6.6 YES 6.6 8.3 -1.7 YES 36.4 27.6 8.8 YES 0.1 1.6 -1.5 YES 1.0 0.0 1.0 YES 

Mauston 34.8 43.6 -8.8 YES 27.5 33.3 -5.8 YES 26.0 9.4 16.6 NO 9.0 2.4 6.6 NO 2.7 11.4 -8.7 NO 

McFarland 31.2 30.6 0.6 YES 37.1 35.4 1.7 YES 26.7 30.6 -3.9 YES 0.9 0.3 0.6 YES 4.1 3.2 0.9 YES 

Medford 29.0 35.2 -6.2 YES 33.2 33.8 -0.6 YES 29.5 26.6 2.9 YES 1.6 1.1 0.6 YES 6.7 3.4 3.3 YES 

Melrose 62.2 52.8 9.4 YES 12.8 19.4 -6.6 YES 23.2 21.0 2.2 YES 0.3 0.3 0.0 YES 1.5 6.5 -5.0 NO 

Menasha 21.6 25.6 -4.0 YES 37.2 38.6 -1.4 YES 25.0 18.5 6.5 YES 15.9 15.9 0.0 YES 0.3 1.4 -1.1 YES 

Menomonee 
Falls 34.2 38.3 -4.1 YES 26.9 20.8 6.1 YES 36.1 35.7 0.4 YES 0.9 0.2 0.7 YES 1.9 4.9 -3.0 YES 
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w/in 
SD HI AI Diff 

w/in 
SD 

Menomonie 36.7 38.4 -1.7 YES 20.9 27.8 -6.9 YES 29.5 21.0 8.5 YES 11.3 11.3 0.1 YES 1.6 1.6 0.1 YES 

Mequon 44.7 35.6 9.1 YES 9.8 16.9 -7.1 YES 40.6 42.6 -2.0 YES 3.6 1.3 2.3 NO 1.3 3.5 -2.2 YES 

Merrill 32.1 42.1 -10.0 YES 25.5 26.7 -1.2 YES 36.0 22.8 13.2 NO 5.5 7.1 -1.6 YES 0.9 1.4 -0.5 YES 

Merrimac 21.6 29.9 -8.3 YES 9.7 11.5 -1.8 YES 25.1 15.2 9.9 NO 43.6 43.3 0.3 YES 0.0 0.2 -0.2 YES 

Merton 53.6 51.4 2.2 YES 16.9 14.4 2.6 YES 26.8 31.2 -4.4 YES 1.8 0.3 1.5 YES 0.9 2.8 -1.9 YES 

Middleton 41.6 37.0 4.6 YES 28.5 33.6 -5.1 YES 19.0 19.7 -0.7 YES 7.8 4.3 3.5 NO 3.1 5.4 -2.3 YES 

Milltown 49.5 57.8 -8.3 YES 15.9 21.9 -6.0 YES 31.1 16.4 14.7 NO 1.5 0.6 1.0 YES 2.0 3.4 -1.4 YES 

Milton 42.2 38.2 4.0 YES 29.5 34.3 -4.8 YES 25.7 26.7 -1.0 YES 1.5 0.1 1.4 YES 1.1 0.7 0.4 YES 

Milwaukee 20.3 22.0 -1.7 YES 51.9 51.2 0.7 YES 26.0 25.6 0.4 YES 0.8 0.8 0.0 YES 1.0 0.6 0.4 YES 

Mishicot 59.7 48.9 10.8 YES 15.9 30.4 -14.5 NO 21.7 17.4 4.3 YES 1.7 1.5 0.2 YES 1.0 1.8 -0.8 YES 

Mondovi 55.5 49.4 6.1 YES 15.2 23.2 -8.0 NO 26.6 23.8 2.8 YES 1.8 1.6 0.2 YES 0.9 2.0 -1.1 YES 

Monroe 43.9 38.8 5.1 YES 40.1 51.0 -10.9 NO 15.4 10.0 5.4 YES 0.4 0.0 0.4 YES 0.2 0.2 0.0 YES 

Montello 25.5 22.9 2.7 YES 17.7 18.0 -0.3 YES 42.1 41.9 0.3 YES 13.5 9.3 4.2 NO 1.2 8.0 -6.8 NO 

Montfort 62.2 65.0 -2.8 YES 24.9 26.3 -1.4 YES 12.9 8.7 4.2 YES 0.0 0.0 0.0 YES 0.0 0.0 0.0 YES 

Monticello 63.5 43.8 19.8 NO 19.8 27.5 -7.7 YES 15.6 12.4 3.2 YES 0.8 0.9 -0.1 YES 0.3 15.5 
-

15.2 NO 

Mosinee 33.5 37.3 -3.8 YES 16.8 19.7 -2.9 YES 40.1 31.9 8.2 YES 9.4 8.6 0.8 YES 0.2 2.6 -2.4 YES 

Mount Calvary 55.9 55.9 0.0 YES 14.5 11.0 3.5 YES 22.5 20.2 2.3 YES 0.4 0.3 0.1 YES 6.7 12.6 -5.9 NO 

Mount Hope 69.0 74.1 -5.1 YES 14.4 16.0 -1.6 YES 16.3 9.9 6.5 YES 0.0 0.0 0.0 YES 0.3 0.0 0.3 YES 

Mount Horeb 38.2 48.3 -10.1 YES 33.2 30.4 2.8 YES 28.6 21.2 7.4 YES 0.0 0.0 0.0 YES 0.0 0.1 -0.1 YES 

Mount Pleasant 66.5 51.5 15.0 NO 16.3 19.5 -3.2 YES 15.6 26.4 -10.8 NO 1.4 0.3 1.1 YES 0.2 2.3 -2.1 YES 

Mukwonago 52.9 37.9 15.0 NO 21.7 36.1 -14.4 NO 20.3 19.6 0.7 YES 2.8 1.4 1.5 YES 2.3 5.1 -2.8 YES 

Muscoda 28.2 43.4 -15.2 NO 35.2 34.1 1.1 YES 35.8 21.0 14.8 NO 0.8 1.5 -0.7 YES 0.0 0.0 0.0 YES 

Muskego 39.0 32.1 6.9 YES 16.5 17.0 -0.5 YES 24.4 27.5 -3.1 YES 11.5 1.5 10.0 NO 8.6 22.0 
-

13.4 NO 

Nashotah 34.0 40.0 -6.0 YES 17.9 14.2 3.7 YES 42.3 43.2 -0.9 YES 1.3 1.2 0.1 YES 4.5 1.5 3.1 YES 
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Neenah 24.9 30.7 -5.8 YES 44.0 46.6 -2.6 YES 26.3 16.5 9.8 NO 3.8 3.7 0.1 YES 1.0 2.5 -1.5 YES 

Neillsville 35.5 61.1 -25.6 NO 18.5 26.3 -7.8 NO 44.2 9.8 34.4 NO 1.5 1.8 -0.3 YES 0.3 1.1 -0.8 YES 

Nekoosa 35.2 41.2 -6.0 YES 17.5 23.9 -6.4 YES 36.8 22.7 14.1 NO 7.4 8.0 -0.6 YES 3.1 4.4 -1.3 YES 

Nelson 38.2 47.0 -8.7 YES 8.5 11.3 -2.8 YES 48.6 37.6 11.0 NO 0.0 0.6 -0.6 YES 4.7 3.5 1.2 YES 

Nelsonville 37.9 36.6 1.3 YES 8.9 12.5 -3.6 YES 51.5 44.9 6.6 YES 1.6 2.3 -0.7 YES 0.1 3.7 -3.6 NO 

Neshkoro 43.9 31.0 12.9 NO 6.5 8.2 -1.7 YES 41.6 49.5 -7.9 YES 6.6 2.8 3.8 NO 1.4 8.5 -7.1 NO 

New Berlin 41.3 35.0 6.3 YES 20.1 18.8 1.3 YES 37.3 41.8 -4.5 YES 0.9 0.2 0.7 YES 0.4 4.2 -3.8 NO 

New Glarus 47.8 51.2 -3.4 YES 24.2 29.7 -5.5 YES 27.3 17.6 9.8 NO 0.2 0.0 0.2 YES 0.5 1.5 -1.0 YES 

New Holstein 52.3 55.2 -2.9 YES 30.7 30.2 0.5 YES 16.7 13.6 3.1 YES 0.2 0.1 0.2 YES 0.1 0.9 -0.8 YES 

New London 38.0 29.5 8.5 YES 24.3 40.3 -16.0 NO 33.4 24.3 9.1 YES 3.3 3.6 -0.3 YES 1.0 2.4 -1.4 YES 

New Richmond 58.1 57.1 1.0 YES 18.6 25.5 -6.9 YES 19.0 12.8 6.2 YES 2.7 1.6 1.1 YES 1.6 3.1 -1.5 YES 

Niagara 17.7 25.9 -8.2 YES 15.0 21.1 -6.1 YES 59.3 45.1 14.2 NO 7.7 6.8 0.9 YES 0.3 1.0 -0.7 YES 

Nichols 51.1 43.9 7.2 YES 7.7 16.5 -8.8 NO 41.2 39.5 1.7 YES 0.0 0.0 0.0 YES 0.0 0.1 -0.1 YES 

North Bay 19.3 15.8 3.5 YES 29.7 27.4 2.3 YES 50.7 56.7 -6.0 YES 0.1 0.1 0.0 YES 0.2 0.0 0.2 YES 

North Freedom 48.8 25.2 23.6 NO 11.9 36.2 -24.3 NO 32.4 27.8 4.6 YES 5.7 5.5 0.2 YES 1.2 5.3 -4.1 NO 

North Hudson 14.5 31.2 -16.7 NO 23.3 21.6 1.7 YES 49.0 35.5 13.5 NO 13.2 10.8 2.4 NO 0.0 1.0 -1.0 YES 

North Prairie 61.5 54.4 7.1 YES 14.4 15.2 -0.7 YES 22.9 28.6 -5.7 YES 0.6 0.0 0.6 YES 0.6 1.8 -1.2 YES 

Norwalk 62.6 60.0 2.6 YES 11.0 24.7 -13.7 NO 25.2 11.4 13.8 NO 0.0 0.0 0.0 YES 1.2 4.0 -2.8 YES 

Oak Creek 40.3 36.1 4.2 YES 22.5 22.6 -0.1 YES 21.1 36.1 -15.0 NO 1.5 0.2 1.3 YES 14.6 5.0 9.6 NO 

Oakdale 34.3 60.0 -25.7 NO 21.2 27.5 -6.3 YES 44.0 11.9 32.1 NO 0.5 0.5 0.0 YES 0.0 0.2 -0.2 YES 

Oakfield 58.8 64.5 -5.7 YES 22.7 23.2 -0.5 YES 15.5 7.1 8.4 YES 0.3 0.1 0.2 YES 2.7 5.2 -2.5 YES 

Oconomowoc 42.6 49.6 -7.0 YES 23.7 25.4 -1.7 YES 24.7 16.4 8.3 YES 6.5 2.7 3.9 NO 2.5 6.0 -3.5 YES 

Oconto 44.7 30.0 14.7 NO 20.3 18.1 2.2 YES 29.3 33.4 -4.1 YES 4.2 4.4 -0.2 YES 1.5 14.1 
-

12.6 NO 

Ogdensburg 37.9 36.2 1.7 YES 9.1 15.3 -6.2 YES 43.7 42.8 0.9 YES 1.8 3.2 -1.4 YES 7.5 2.4 5.1 NO 
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Oliver 8.3 43.8 -35.5 NO 5.4 8.7 -3.3 YES 84.0 46.0 38.0 NO 2.0 1.2 0.8 YES 0.3 0.4 -0.1 YES 

Omro 44.6 41.2 3.4 YES 24.9 24.4 0.5 YES 24.9 26.0 -1.1 YES 4.7 4.8 -0.1 YES 0.9 3.6 -2.7 YES 

Onalaska 28.3 39.0 -10.7 YES 29.6 28.9 0.7 YES 35.9 21.9 14.0 NO 5.0 5.4 -0.4 YES 1.2 4.8 -3.6 NO 

Oostburg 58.0 41.8 16.2 NO 26.2 35.2 -9.0 NO 14.9 22.5 -7.6 YES 0.5 0.0 0.5 YES 0.4 0.6 -0.2 YES 

Oregon 45.2 45.3 -0.1 YES 34.0 33.5 0.5 YES 18.8 17.7 1.1 YES 1.3 0.0 1.3 YES 0.7 3.6 -2.9 YES 

Orfordville 64.5 70.8 -6.3 YES 20.5 24.2 -3.7 YES 15.0 5.0 10.0 NO 0.0 0.0 0.0 YES 0.0 0.0 0.0 YES 

Oshkosh 41.3 39.5 1.8 YES 37.2 45.6 -8.4 NO 15.4 9.2 6.2 YES 5.6 3.5 2.1 NO 0.5 2.2 -1.7 YES 

Osseo 39.3 57.8 -18.5 NO 25.0 32.2 -7.2 YES 32.5 6.4 26.1 NO 0.8 1.2 -0.4 YES 2.4 2.5 -0.1 YES 

Owen 52.3 44.3 8.0 YES 16.1 36.2 -20.1 NO 27.0 13.9 13.1 NO 2.7 1.7 1.0 YES 1.9 3.9 -2.0 YES 

Oxford 29.0 49.5 -20.5 NO 18.2 23.7 -5.5 YES 39.5 19.2 20.3 NO 3.8 2.5 1.3 YES 9.5 5.1 4.4 NO 

Paddock Lake 42.8 40.0 2.8 YES 14.1 15.0 -0.9 YES 29.6 31.4 -1.8 YES 8.9 7.6 1.3 YES 4.6 6.0 -1.4 YES 

Palmyra 24.8 38.1 -13.3 NO 19.2 24.2 -5.0 YES 47.0 30.2 16.8 NO 4.7 2.6 2.1 NO 4.3 4.9 -0.6 YES 

Pardeeville 46.2 41.3 4.9 YES 14.5 15.1 -0.6 YES 24.6 26.4 -1.8 YES 13.2 11.5 1.7 YES 1.5 5.8 -4.3 NO 

Pepin 28.7 36.0 -7.3 YES 33.3 30.5 2.8 YES 36.0 31.6 4.4 YES 2.0 1.9 0.1 YES 0.0 0.0 0.0 YES 

Peshtigo 25.2 36.6 -11.4 NO 31.3 28.1 3.2 YES 36.8 28.7 8.1 YES 5.1 4.8 0.4 YES 1.6 1.8 -0.2 YES 

Pewaukee 42.0 32.5 9.5 YES 31.6 29.7 1.9 YES 15.4 21.6 -6.2 YES 6.8 0.1 6.7 NO 4.2 16.1 
-

11.9 NO 

Pewaukee 29.3 33.8 -4.5 YES 33.9 20.4 13.5 NO 24.2 31.4 -7.2 YES 8.3 0.4 7.9 NO 4.3 14.0 -9.7 NO 

Phillips 27.6 42.6 -15.0 NO 20.9 25.4 -4.5 YES 31.0 8.3 22.7 NO 19.8 18.9 0.9 YES 0.7 4.9 -4.2 NO 

Pigeon Falls 56.2 65.1 -8.9 YES 19.3 24.4 -5.1 YES 19.4 4.4 15.0 NO 4.3 4.3 0.0 YES 0.8 1.8 -1.0 YES 

Pittsville 41.1 60.9 -19.8 NO 14.5 16.1 -1.6 YES 43.0 19.3 23.7 NO 1.2 1.9 -0.7 YES 0.2 1.9 -1.7 YES 

Plainfield 52.8 53.1 -0.3 YES 16.7 27.9 -11.2 NO 29.2 18.0 11.2 NO 0.0 0.0 0.0 YES 1.3 1.1 0.2 YES 

Platteville 42.8 50.7 -7.9 YES 32.6 31.8 0.8 YES 23.2 17.3 5.9 YES 0.1 0.1 0.0 YES 1.3 0.1 1.3 YES 

Pleasant Prairie 46.6 40.3 6.3 YES 19.8 14.9 4.9 YES 24.9 36.0 -11.1 NO 3.3 0.8 2.6 NO 5.4 8.1 -2.7 YES 

Plum City 40.8 43.1 -2.3 YES 11.1 14.4 -3.3 YES 47.0 41.7 5.3 YES 0.9 0.1 0.9 YES 0.2 0.7 -0.5 YES 
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SD 

Port Edwards 15.3 22.4 -7.1 YES 9.5 13.8 -4.3 YES 55.1 45.6 9.5 NO 18.9 16.6 2.3 NO 1.2 1.6 -0.4 YES 

Port 
Washington 38.5 38.3 0.2 YES 31.4 25.6 5.9 YES 26.8 34.0 -7.2 YES 1.3 0.0 1.3 YES 2.0 2.1 -0.1 YES 

Portage 35.4 33.7 1.7 YES 23.3 23.8 -0.5 YES 33.5 27.6 5.9 YES 7.3 7.8 -0.5 YES 0.5 7.1 -6.6 NO 

Potter 68.3 53.1 15.3 NO 14.7 23.4 -8.7 NO 12.4 7.1 5.3 YES 2.5 1.8 0.7 YES 2.1 14.7 
-

12.6 NO 

Pound 58.4 49.2 9.2 YES 11.0 19.7 -8.7 NO 29.6 27.0 2.6 YES 0.4 0.1 0.3 YES 0.6 3.9 -3.3 YES 

Poynette 37.7 41.4 -3.7 YES 19.3 18.3 1.0 YES 39.1 34.8 4.3 YES 0.7 0.1 0.6 YES 3.2 5.3 -2.1 YES 

Prairie du Chien 33.1 40.8 -7.7 YES 24.5 28.8 -4.3 YES 24.5 17.1 7.4 YES 17.5 12.0 5.5 NO 0.4 1.3 -0.9 YES 

Prairie du Sac 32.5 45.7 -13.2 NO 38.4 41.8 -3.4 YES 21.4 6.2 15.2 NO 7.6 6.3 1.3 YES 0.1 0.0 0.1 YES 

Prairie Farm 49.6 43.9 5.7 YES 12.0 22.6 -10.6 NO 33.9 24.6 9.3 YES 4.4 5.5 -1.1 YES 0.1 3.3 -3.2 YES 

Prescott 34.2 38.2 -4.0 YES 22.0 25.6 -3.6 YES 36.5 29.0 7.5 YES 7.3 7.2 0.1 YES 0.0 0.1 -0.1 YES 

Princeton 40.9 34.2 6.8 YES 14.4 20.3 -5.9 YES 38.4 32.3 6.2 YES 3.8 3.3 0.5 YES 2.5 10.0 -7.5 NO 

Pulaski 48.3 41.3 7.0 YES 25.3 35.8 -10.5 NO 23.2 21.2 2.0 YES 3.1 1.5 1.6 YES 0.1 0.3 -0.2 YES 

Racine 27.0 23.1 3.9 YES 50.0 46.4 3.7 YES 22.0 28.8 -6.8 YES 0.7 1.3 -0.6 YES 0.3 0.5 -0.2 YES 

Radisson 41.7 41.8 -0.1 YES 22.7 27.1 -4.4 YES 34.4 21.8 12.6 NO 0.6 7.0 -6.4 NO 0.6 2.3 -1.7 YES 

Randolph 60.1 51.1 9.0 YES 24.8 33.0 -8.2 NO 14.7 15.7 -1.0 YES 0.4 0.0 0.4 YES 0.0 0.2 -0.2 YES 

Random Lake 35.3 32.8 2.5 YES 26.3 24.3 2.0 YES 16.5 22.5 -6.0 YES 19.7 19.6 0.1 YES 2.2 0.9 1.3 YES 

Reedsburg 35.5 43.4 -7.9 YES 35.4 42.0 -6.6 YES 25.2 9.8 15.4 NO 0.8 0.8 0.0 YES 3.1 4.0 -0.9 YES 

Reedsville 36.8 42.1 -5.3 YES 42.4 33.9 8.5 NO 19.7 21.7 -2.0 YES 1.1 0.4 0.7 YES 0.0 1.9 -1.9 YES 

Reeseville 60.8 33.3 27.5 NO 22.4 35.9 -13.5 NO 16.8 26.1 -9.3 YES 0.0 0.0 0.0 YES 0.0 4.7 -4.7 NO 

Rewey 78.8 78.8 0.0 YES 13.7 16.8 -3.1 YES 7.5 4.3 3.2 YES 0.0 0.0 0.0 YES 0.0 0.0 0.0 YES 

Rhinelander 24.2 29.6 -5.4 YES 26.0 31.3 -5.3 YES 43.7 35.9 7.8 YES 2.9 2.6 0.3 YES 3.2 0.6 2.6 YES 

Rice Lake 45.1 29.3 15.8 NO 24.7 38.8 -14.1 NO 17.9 18.5 -0.6 YES 11.0 9.8 1.2 YES 1.3 3.6 -2.3 YES 

Richfield 58.0 47.8 10.2 YES 7.5 9.3 -1.8 YES 31.0 38.3 -7.3 YES 2.6 1.5 1.1 YES 0.9 3.1 -2.2 YES 
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Richland Center 26.5 31.6 -5.1 YES 25.0 27.6 -2.6 YES 42.7 36.2 6.6 YES 1.2 1.3 -0.1 YES 4.6 3.4 1.2 YES 

Ridgeland 53.8 50.3 3.5 YES 22.4 31.9 -9.5 NO 22.9 12.0 10.9 NO 0.2 0.0 0.2 YES 0.7 5.8 -5.1 NO 

Ripon 41.9 45.9 -4.0 YES 29.7 27.9 1.8 YES 26.7 24.4 2.3 YES 0.8 0.6 0.3 YES 0.9 1.2 -0.3 YES 

River Falls 37.5 43.5 -6.0 YES 24.8 28.9 -4.1 YES 35.9 25.7 10.2 NO 1.5 1.0 0.5 YES 0.3 1.0 -0.7 YES 

River Hills 23.7 20.3 3.4 YES 12.4 9.4 3.0 YES 60.5 66.2 -5.7 YES 3.1 3.1 0.0 YES 0.3 1.1 -0.8 YES 

Roberts 66.0 58.9 7.1 YES 24.0 30.0 -6.0 YES 8.6 9.3 -0.7 YES 0.4 0.0 0.4 YES 1.0 1.7 -0.7 YES 

Rochester 58.0 34.2 23.8 NO 7.0 20.3 -13.3 NO 31.4 35.9 -4.5 YES 2.3 0.9 1.4 YES 1.3 8.7 -7.4 NO 

Rock Springs 40.5 35.3 5.2 YES 13.3 19.9 -6.6 YES 44.9 43.4 1.5 YES 0.4 1.3 -0.9 YES 0.9 0.1 0.8 YES 

Rockdale 46.6 30.5 16.1 NO 12.1 24.0 -11.9 NO 36.2 37.4 -1.2 YES 1.5 2.2 -0.7 YES 3.6 6.0 -2.4 YES 

Rockland 44.5 41.2 3.3 YES 26.3 38.8 -12.5 NO 27.5 17.3 10.2 NO 0.9 1.9 -1.0 YES 0.8 0.7 0.1 YES 

Rosholt 59.4 51.2 8.2 YES 12.3 23.5 -11.2 NO 24.9 21.8 3.1 YES 3.1 2.7 0.4 YES 0.3 0.8 -0.5 YES 

Rothschild 15.8 23.8 -8.0 YES 24.5 22.9 1.6 YES 50.5 46.1 4.5 YES 6.4 5.7 0.7 YES 2.8 1.6 1.2 YES 

Saint Francis 26.1 28.3 -2.2 YES 43.1 34.0 9.1 NO 26.9 37.2 -10.3 NO 0.2 0.1 0.1 YES 3.7 0.4 3.3 YES 

Saint Nazianz 48.5 36.9 11.6 NO 27.4 29.8 -2.4 YES 21.7 30.0 -8.3 YES 1.8 2.8 -1.0 YES 0.6 0.6 0.0 YES 

Saukville 42.1 34.3 7.8 YES 27.1 25.4 1.7 YES 23.0 34.7 -11.7 NO 1.4 1.2 0.2 YES 6.4 4.4 2.0 YES 

Scandinavia 42.6 32.2 10.4 YES 11.0 14.5 -3.5 YES 32.6 36.5 -3.9 YES 11.5 12.2 -0.7 YES 2.3 4.6 -2.3 YES 

Schofield 12.2 13.9 -1.7 YES 24.8 29.4 -4.6 YES 28.2 16.9 11.4 NO 30.7 33.4 -2.7 NO 4.1 6.5 -2.4 YES 

Seymour 46.5 41.9 4.7 YES 27.6 31.5 -3.9 YES 25.6 26.5 -0.9 YES 0.2 0.0 0.2 YES 0.1 0.2 -0.1 YES 

Shawano 27.2 30.0 -2.8 YES 26.8 35.7 -8.9 NO 43.8 30.9 12.9 NO 1.6 2.0 -0.4 YES 0.6 1.3 -0.7 YES 

Sheboygan 35.7 26.5 9.2 YES 44.0 41.3 2.7 YES 18.3 30.2 -11.9 NO 1.8 1.2 0.7 YES 0.2 0.8 -0.6 YES 

Sheboygan 
Falls 43.0 35.4 7.6 YES 28.7 22.6 6.1 YES 19.0 37.8 -18.8 NO 3.0 2.1 0.9 YES 6.3 2.1 4.2 NO 

Sherwood 50.1 54.0 -3.9 YES 17.0 20.4 -3.4 YES 24.4 23.3 1.1 YES 3.1 0.4 2.7 NO 5.4 1.9 3.5 YES 

Shiocton 46.3 40.0 6.3 YES 13.6 28.1 -14.5 NO 35.1 19.9 15.2 NO 3.4 4.8 -1.4 YES 1.6 7.2 -5.6 NO 
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Shorewood 
Hills 13.6 23.7 -10.1 YES 33.7 30.4 3.3 YES 52.7 45.9 6.9 YES 0.0 0.0 0.0 YES 0.0 0.0 0.0 YES 

Shullsburg 57.4 71.1 -13.7 NO 25.2 23.4 1.8 YES 17.1 5.6 11.5 NO 0.3 0.0 0.3 YES 0.0 0.0 0.0 YES 

Sister Bay 33.1 49.8 -16.7 NO 16.5 25.8 -9.3 NO 50.3 24.2 26.1 NO 0.1 0.3 -0.2 YES 0.0 0.0 0.0 YES 

Slinger 45.7 38.0 7.7 YES 21.1 20.2 0.9 YES 29.8 35.2 -5.4 YES 1.1 0.2 0.9 YES 2.3 6.4 -4.1 NO 

Soldiers Grove 32.4 30.6 1.9 YES 7.1 15.0 -7.9 NO 58.5 50.9 7.6 YES 1.0 1.5 -0.5 YES 1.0 2.0 -1.0 YES 

Solon Springs 10.2 30.3 -20.1 NO 13.6 18.8 -5.2 YES 41.9 19.3 22.6 NO 33.7 31.5 2.2 NO 0.6 0.2 0.4 YES 

South 
Milwaukee 18.6 23.0 -4.4 YES 45.8 32.8 13.0 NO 34.0 43.7 -9.7 NO 0.5 0.2 0.3 YES 1.1 0.3 0.8 YES 

Sparta 42.4 49.2 -6.8 YES 26.0 40.1 -14.1 NO 29.3 8.5 20.8 NO 2.3 1.3 1.0 YES 0.0 0.8 -0.8 YES 

Spring Green 57.0 47.4 9.6 YES 27.8 37.4 -9.6 NO 14.6 14.8 -0.2 YES 0.4 0.3 0.1 YES 0.2 0.0 0.2 YES 

Spring Valley 29.7 36.6 -6.9 YES 6.5 8.3 -1.8 YES 57.9 49.3 8.6 YES 5.1 4.8 0.3 YES 0.8 1.0 -0.2 YES 

Stanley 59.8 45.4 14.4 NO 18.6 39.7 -21.1 NO 18.1 5.4 12.7 NO 2.7 1.8 0.9 YES 0.8 7.8 -7.0 NO 

Stetsonville 41.6 56.7 -15.1 NO 38.6 32.1 6.5 YES 16.2 5.8 10.4 NO 0.9 0.0 0.9 YES 2.7 5.4 -2.7 YES 

Stevens Point 22.1 24.7 -2.6 YES 25.7 36.2 -10.5 NO 45.2 31.2 14.0 NO 6.6 5.5 1.1 YES 0.4 2.5 -2.1 YES 

Stockholm 13.8 27.9 -14.1 NO 8.3 7.2 1.1 YES 71.7 56.2 15.5 NO 3.1 2.2 0.9 YES 3.1 6.5 -3.4 YES 

Stoddard 27.5 40.3 -12.8 NO 25.6 23.5 2.1 YES 32.9 21.5 11.4 NO 13.6 13.6 0.0 YES 0.4 1.1 -0.7 YES 

Stoughton 34.4 31.5 2.9 YES 31.8 32.6 -0.8 YES 24.5 27.8 -3.3 YES 3.9 1.0 2.9 NO 5.4 7.2 -1.8 YES 

Stratford 47.3 48.0 -0.7 YES 11.8 20.2 -8.4 NO 38.9 27.8 11.1 NO 1.6 0.8 0.8 YES 0.4 3.1 -2.7 YES 

Sturgeon Bay 45.1 49.4 -4.3 YES 22.5 32.9 -10.4 NO 30.4 15.0 15.4 NO 1.7 0.5 1.2 YES 0.3 2.2 -1.9 YES 

Suamico 26.4 25.9 0.5 YES 9.3 10.4 -1.1 YES 54.1 56.7 -2.6 YES 1.3 0.4 0.9 YES 8.9 6.6 2.3 YES 

Sullivan 51.5 46.8 4.7 YES 13.6 15.1 -1.5 YES 33.8 31.2 2.6 YES 0.9 0.2 0.8 YES 0.2 6.8 -6.6 NO 

Sun Prairie 36.7 38.1 -1.4 YES 41.2 33.9 7.3 YES 19.6 24.1 -4.5 YES 1.7 0.1 1.6 YES 0.8 3.9 -3.1 YES 

Superior 34.0 36.9 -2.9 YES 12.9 22.2 -9.3 NO 48.9 36.1 12.8 NO 4.0 2.4 1.6 YES 0.2 2.4 -2.2 YES 

Suring 24.8 30.2 -5.4 YES 18.0 18.0 0.0 YES 56.2 50.1 6.1 YES 0.9 0.6 0.4 YES 0.1 1.2 -1.1 YES 




