

The Zero Forcing Polynomial of a Ladder Graph

Skyler Hanson, Dawn Paukner, Faculty Advisor: Dr. Shanise Walker

Department of Mathematics, University of Wisconsin-Eau Claire

MOTIVATION

Zero forcing was first introduced in 2008, and has been studied in connection with quantum physics, theoretical computer science, power network monitoring, and linear algebra.

DEFINITIONS

- A graph G is a pair G = (V, E), where V is the set of vertices and E is the set of edges (an edge is a two-element subset of vertices).
- The degree of a vertex *v* is the number of edges incident to the vertex.
- If *G* is a graph with each vertex colored either white or blue, the color change rule states that if *v* is a blue vertex of *G* with exactly one white neighbor *u*, then change the color of *u* to blue.

Figure: Graph with vertices a and g initially colored vertices blue.

- A zero forcing set for a graph G is a set of initially colored blue vertices $S \subseteq V(G)$ such that by applying the zero forcing color change rule repeatedly, all the remaining vertices eventually become blue.
- The zero forcing number of a graph G is the minimum cardinality over all zero forcing sets of G.

Figure: Zero forcing set of this graph is $\{b, g\}$, and the zero forcing number is 2.

▶ The zero forcing polynomial of a graph G is given by:

$$\mathcal{Z}(G; x) = \sum_{i=0}^{n} z(G; i) x^{i}$$

where z(G; i) is the number of zero forcing sets of G of cardinality i.

A two-dimensional *n*-ladder graph is the graph Cartesian product $P_2 \square P_n$, where P_n is the path graph on *n* vertices.

Figure: The graph of $P_2 \square P_6$.

- The corner vertex of an *n*-ladder graph is a vertex of degree 2.
- An internal vertex of a *n*-ladder graph is a vertex of degree 3.

GOAL

Our research team aims to describe the closed formula for the zero forcing polynomial of *n*-ladder graphs.

RELATED RESULTS

Complete graph K₆

Complete bipartite graph $K_{3,3}$

Cycle graph C₆

Theorem [2] Complete Graph: For $n \ge 2$, then $\mathcal{Z}(K_n; x) = x^n + nx^{n-1}$.

Theorem [2] Complete Multipartite Graph: If $a_1, ..., a_k \ge 2$, then $\mathcal{Z}(K_{a_1,...,a_k}; x) = (\sum_{1 \le i < j \le k} a_i a_j) x^{n-2} + n x^{n-1} + x^n$.

Theorem [2] Cycle Graph: For $n \ge 3$, then $\mathcal{Z}(C_n; x) = \sum_{i=2}^n \left(\binom{n}{i} - \frac{n}{i}\binom{n-i-1}{i-1}\right) x^i$.

MAIN RESULTS

Theorem: Let *G* be the *n*-ladder graph $P_2 \square P_n$. Then $z(P_2 \square P_n; 2) = 6$ when $n \ge 3$.

A zero forcing set of size 2 in $P_2 \square P_n$ must include a corner vertex.

Theorem: Let G be the n-ladder graph $P_2 \square P_n$. Then $z(P_2 \square P_n; 2n-3) = \binom{2n}{2n-3}$.

▶ Every subset of vertices of $P_2 \square P_n$ of size 2n-3 is a zero forcing set.

Theorem: Let *G* be the *n*-ladder graph $P_2 \square P_n$. Then $z(P_2 \square P_n; 4) = \left(\binom{2n}{4} - 4\right) = 66$ when n = 4.

Figure: The set of blue vertices of size 4 that does not form a zero forcing set in $P_2 \square P_4$.

OTHER RESULTS

Lemma: An L consists of three vertices u_i , w_i and either u_{i+1} or w_{i+1} for i=2 or it consists of three vertices u_i , w_i and either u_{i-1} or w_{i-1} for i=n-1. A set that forms a L is a zero forcing set.

Lemma: A Z consists of four vertices u_{i-1} , u_i , w_i , w_{i+1} or u_{i+1} , u_i , w_i , w_{i-1} for $3 \le i \le n-2$. A set that forms a Z is a zero forcing set.

FUTURE RESEARCH

Conjecture: For $n \ge 5$, $z(P_2 \square P_n; 4) = 4\binom{2n-2}{2} + 2\binom{2n-4}{2} + 19n - 82$.

Figure: The graph of $P_2 \square P_5$.

- Establish the zero forcing polynomial for the n-ladder graph $P_2 \square P_n$.
- We hope to extend our research on ladder graphs to grid graphs. A two-dimensional $m \times n$ grid graph is the graph Cartesian product $P_m \square P_n$, where P_n is the path graph on n vertices.

Figure: The graph of $P_3 \square P_5$.

OPEN PROBLEMS

- Characterize the zero forcing polynomials for other families of graphs.
- Determine which graphs are recognized by their zero forcing polynomials. It was shown by Boyer et al. [2] that path graphs and complete graphs are recognized by their zero forcing polynomials.
- **Conjecture** [2]: For any graph G on n vertices, $z(G; i) \le z(P_n; i)$ for $1 \le i \le n$. That is, the zero forcing coefficient for a graph on n vertices is less than or equal to the zero forcing coefficient for the path graph on n vertices.

ACKNOWLEDGEMENTS

- We would like to thank the University of Wisconsin-Eau Claire Department of Mathematics, the Office of Research and Sponsored Projects, and Learning and Technology Services for funding this project.
- We would like to thank McKenzie Scanlan for her contributions to this project.

REFERENCES

- AIM Special Work Group. Zero forcing sets and the minimum rank of graphs. *Linear Algebra and its Applications*, 428(7):16281648, 2008.
- K. Boyer, B. Brimkov, S. English, D. Ferrero, A. Keller, R. Kirsch, M. Phillips, and C. Reinhart. *The zero forcing polynomial of a graph.* arXiv: 1801.08910v1.