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Motivation

Zero forcing was first introduced in 2008, and has been
studied in connection with quantum physics, theoretical
computer science, power network monitoring, and linear
algebra.

Definitions

IA graph G is a pair G = (V ,E), where V is the set of
vertices and E is the set of edges (an edge is a
two-element subset of vertices).
IThe degree of a vertex v is the number of edges incident
to the vertex.
I If G is a graph with each vertex colored either white or
blue, the color change rule states that if v is a blue
vertex of G with exactly one white neighbor u, then
change the color of u to blue.
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Figure: Graph with vertices a and g initially colored vertices blue.

IA zero forcing set for a graph G is a set of initially
colored blue vertices S ⊆ V(G) such that by applying
the zero forcing color change rule repeatedly, all the
remaining vertices eventually become blue.
IThe zero forcing number of a graph G is the minimum
cardinality over all zero forcing sets of G.
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Figure: Zero forcing set of this graph is {b ,g}, and the zero forcing number is 2.

IThe zero forcing polynomial of a graph G is given by:

Z(G; x) =
n∑

i=0

z(G; i)x i

where z(G; i) is the number of zero forcing sets of G of
cardinality i.
IA two-dimensional n-ladder graph is the graph Cartesian
product P2�Pn, where Pn is the path graph on n vertices.

Figure: The graph of P2�P6.

IThe corner vertex of an n-ladder graph is a vertex of
degree 2.
IAn internal vertex of a n-ladder graph is a vertex of
degree 3.

Goal

Our research team aims to describe the closed formula for the zero forcing polynomial of n-ladder
graphs.

Related Results

Complete graph K6 Complete bipartite graph K3,3 Cycle graph C6

Theorem [2] Complete Graph: For n > 2, then Z(Kn; x) = xn + nxn−1.
Theorem [2] Complete Multipartite Graph: If a1, ...,ak > 2, then

Z(Ka1,...,ak ; x) = (
∑

16i<j6k aiaj)xn−2 + nxn−1 + xn.

Theorem [2] Cycle Graph: For n > 3, then Z(Cn; x) =
∑n

i=2

((n
i

)
− n

i

(n−i−1
i−1

))
x i.

Main Results
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Theorem: Let G be the n-ladder graph P2�Pn. Then z(P2�Pn;2) = 6 when n > 3.
IA zero forcing set of size 2 in P2�Pn must include a corner vertex.

Theorem: Let G be the n-ladder graph P2�Pn. Then z(P2�Pn;2n − 3) =
( 2n

2n−3

)
.

IEvery subset of vertices of P2�Pn of size 2n − 3 is a zero forcing set.

Theorem: Let G be the n-ladder graph P2�Pn. Then z(P2�Pn;4) =
((2n

4

)
− 4

)
= 66 when n = 4.

Figure: The set of blue vertices of size 4 that does not form a zero forcing set in P2�P4.

Other Results

Lemma: An L consists of three vertices ui,wi and either ui+1 or wi+1 for i = 2 or it consists of three
vertices ui,wi and either ui−1 or wi−1 for i = n − 1. A set that forms a L is a zero forcing set.

Lemma: A Z consists of four vertices ui−1,ui,wi,wi+1 or ui+1,ui,wi,wi−1 for 3 6 i 6 n − 2. A set
that forms a Z is a zero forcing set.

An L shape in P2�P5 A Z shape in P2�P5

Future Research

IConjecture: For n > 5,
z(P2�Pn;4) = 4

(2n−2
2

)
+ 2

(2n−4
2

)
+ 19n − 82.

Figure: The graph of P2�P5.

IEstablish the zero forcing polynomial for the
n-ladder graph P2�Pn.
IWe hope to extend our research on ladder
graphs to grid graphs. A two-dimensional
m × n grid graph is the graph Cartesian
product Pm�Pn, where Pn is the path graph on
n vertices.

Figure: The graph of P3�P5.

Open Problems

ICharacterize the zero forcing polynomials for
other families of graphs.
IDetermine which graphs are recognized by
their zero forcing polynomials. It was shown by
Boyer et al. [2] that path graphs and complete
graphs are recognized by their zero forcing
polynomials.
IConjecture [2]: For any graph G on n vertices,
z(G; i) 6 z(Pn; i) for 1 6 i 6 n. That is, the zero
forcing coefficient for a graph on n vertices is
less than or equal to the zero forcing coefficient
for the path graph on n vertices.
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