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Abstract

Today’s Electricity market is highly interconnected. The actions of customers,

transmission and distribution systems, generation systems, markets, and service

providers are correlated. The dynamic stability of the grid depends on the dynamic

characteristics of all these components and systems. The least understood compo-

nent is the consumer load. While average power is metered for billing, the voltage

or current relationships and dynamic characteristics of loads are not monitored.

It is the purpose of this work to analyze high-bandwidth voltage and current mea-

surements from an office building to characterize certain load features. The focus

is on transient events under the premise that some features will be revealed when

loads switch on and off, or change mode of operation. This approach involves certain

tasks. First an event needs to be identified, and the duration of transient needs to

be estimated. Second, features that might be useful for classifying transients must

be determined. Third, classification is performed using machine learning Techniques.

Signal Processing tools based on changes in current waveforms are used to detect

events. Many features are examined in this work including voltage and current

harmonics, power factor, active, reactive, and distortion power. Machine Learning

techniques guide the classification task. These include self-organising maps and neu-

ral network.

Analysis and results are presented based on actual load measurements.
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Chapter 1

INTRODUCTION

1.1 OVERVIEW OF RESEARCH - TRACKING

LOADS

The composition of loads affects the stability in an electric power grid. Further

knowledge about the composition of the loads can help both customers and grid

operators. The information can provide customer with greater control over their

own equipment. It may help them reduce their excess consumption or simply pro-

vide a degree of freedom in order to do further analysis on their use of electricity.

Moreover, the information that load monitoring provides to the utilities may guide

their future actions in load management. The correlation between the load types

and the peak load level, over a period of time can help to predict the load trend [6]

[15]. Further, the trends in the use of electricity by the consumers or of a community

is a very valuable information for policy makers.

The literature is abundant with methods to decompose loads based on load sig-
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natures. Due to the diverse definitions of event and even a more diverse set of

signatures associated with every event, the literature is full of various methods to

detect events. However, the majority of these methods have used abnormalities in

the current signal and some have used voltage signal discrepancies to detect distur-

bances [22].

Recently there has been a surge in the use of Machine Learning techniques to un-

derstand the behavior of events [23]. With the rapid development of measuring

instruments at higher sampling frequencies, the large amount of data being received

from energy meters can be coupled with Machine Learning tools to perform analysis

and make predictions. This work focuses on performing detailed energy sensing, of

loads. Moreover this study focuses on selecting the optimum features for Machine

Learning Algorithms.

Load Monitoring can be performed in two ways.

i. Intrusive Load Monitoring (ILM) or Distributed sensing methods, and

ii.Non-Intrusive Load Monitoring (NILM) or Single point sensing methods

Intrusive Load Monitoring or Distributed sensing methods requires one or more

than one sensor per appliance for monitoring [23]. But this method has obvious

practical disadvantages, which includes high costs, multiple sensor configuration,

and installation complexity. Non-Intrusive Load Monitoring (NILM) estimates the

energy consumed by individual appliances and their states utilizing aggregate mea-

surements from a small number of power meters [7]. Among the two methods,
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NILM doesn’t require intrusion into the customers’ premises for monitoring energy

consumption.

This work is non-intrusive, as it relies on data gathered at the service entry of

a building. In this work, 60Hz Current and Voltage signals from a building are

analyzed. The waveforms have been sampled at a rate of 5kHz. The high frequency

sampling helps determine Electric Load Signatures from the real-time monitored

data.

In order to detect the events, the characteristic features of the individual loads

are ideal for signatures. Because the measurements are aggregated, individual load

characteristics may be revealed during turn-on events and turn-off events. The

unique characteristics in the electrical signals are attributed to the load signatures

and form the basis for event detection. Other disturbances may also be present, in-

cluding events such as disturbances with equipment, arcing events, and equipment

failures etc. These disturbances in the signal can also be found and by analyzing

the signatures based on the observations and may lead to preventative actions for

eliminating the problems.

Out of the multiple components connected to the system, some include power elec-

tronic components. Knowledge of the level of power electronics load can be useful

for certain analysis, especially stability. In order to distinguish a power electronic

load, the features of those loads in terms of both steady state and dynamic state

are used in this work to help in the process of load classification.
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The features if properly selected, can help to determine the starting turn-on in-

stance of a component and also help to determine when the component was turned

off, based on the similarity in the feature space of the component. As some loads may

dominate the characteristics, and it may be difficult to isolate the smaller compo-

nents from the larger ones. Also, if the feature space is too large, it becomes difficult

for measured features to converge to unique component classification. Hence, there

is a trade off between the number of features and classifying both larger and smaller

loads. Although it is difficult to classify all load components connected to the sys-

tem, it may be possible to cluster select load classes and classify those into electrical

or power electronic loads based on the feature space of the individual classes.

1.2 BACKGROUND AND LITERATURE RE-

VIEW

In literature, authors have achieved load segregation by decomposing the total load

into individual appliance loads. Almost three decades back, George Hart [7] first

formulated the technique of separating total power into a sum of constituent powers:

P (t) =
n∑

i=1

Pi (t) (1.1)

where,

n: The total number of active appliances

P(t): Total power

Pi (t): Power consumption of individual appliances
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In contrast to this traditional methods for load monitoring, our work considers

multiple features of the given signal. More detailed descriptions about the features

and the feature selection methods are explained in Chapter 3. These features are

used to cluster the total load into independent loads using Machine Learning Clus-

tering techniques as explained in Chapter 5. Note that events with ‘n’ number of

unique features can be associated with an n-dimensional feature space. Then, the

clustering technique clusters the events into subgroups as described in Chapter 5.

1.2.1 EVENT DETECTION

The majority of literature work have focused on using abnormalities in the current

signal in order to detect events. Authors in [21] and [9] have used the threshold tech-

nique on superimposed fault current component; [18] has used a simple threshold

technique; [14] has presented a composite method combined with Threshold tech-

nique to detect a disturbance. The technique used in this work for detecting events

is explained in a detailed manner in Section 2.3.2.

1.3 CONTRIBUTION OF THIS RESEARCH

This work provides insight into the use of both time and frequency domain analysis

of a signal to enhance the capability of a Load Monitoring system.

The contributions are in the following broad categories:

i: Comparison for Fast vs Slow Transients
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ii: Selection of optimal features for the segregation of Loads

iii: Clustering the loads using Machine Learning Techniques

DATA SETUP

The analysis relies on data obtained from BPA Headquarters, Portland, Oregon.

The data constitutes the building current and voltage measurement from mains

supply and 5 feeders, sampled at 5kHz. The analysis has been performed on a total

of 21 data sequences, in this work.

Every 1 sec worth of a signal comprises 5000 sample points. A current waveform

for a period of 1 sec, is as shown in Figure 1.1.

Figure 1.1: Current Waveform for a period of 1 sec

DETECTION OF EVENTS

Every time, a component is turned on or turned off, an event is triggered. A detec-

tion signal helps to determine the time at which the triggering of the event started
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as well as the end of the transient response.

For detection of events, a detection waveform is used based on the characteristics of

the given input signal. The segment RMS value of the differential current waveform

is used as the detection signal in this study. Then a peak detection algorithm is

used to detect the event occurrences. The starting and ending of the event is de-

tected using the inverse peaks of the detection signals. The duration of the event is

determined and the event is characterized by peak location as well as the duration

of the event.

LOAD ANALYSIS

The events are classified into clusters, formed on the basis of features associated

with every event. In this work, the various electrical parameters which are used

to analyze the load signatures are : mains current and voltage signals, power of

differential current signal, electrical power signals such as active power, reactive

power and apparent power for the fundamental component as well as the harmonic

components up to the 15th harmonic, and power factor.

1.4 OUTLINE OF THESIS

The objective of the research is to perform detailed energy sensing and to provide

information on the energy consumed. Hence, the overall research is divided into the

following steps. First, obtain the load data. After obtaining the load data, the data is

passed through a pre-processing phase, to clean the data. Then the signal undergoes

a reduction phase. The reduction of the signal is performed in order to obtain the
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detection function signal. This form the basis for further analysis. Next, based

on the detection function signal, electrical signatures are obtained. These serve as

the features. Third, after analyzing the features obtained, segregation of loads is

performed via supervised training models and using a unsupervised classification

model. Finally, the performance is evaluated in terms of segregation of electrical

and electronic loads.



Chapter 2

DETECTING EVENTS

2.1 METHODS OF DETECTING WAVEFORM

ABNORMALITY

The literature has an abundant set of methods to detect electrical events. The ma-

jority of these use abnormalities in the current signal and some use voltage signal

discrepancies as well [22]. This section presents some research in this area using ref-

erence [22] and a literature review. Finally a method to detect events by combining

the advantages of the methods in the literature is presented.

2.1.1 ABNORMAL CURRENT METHOD

The superimposed fault current component which is the current signal less the nor-

mal load component, is used in references [9] and [21] to detect disturbances. The

abnormal current component can be derived as follows.

9
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iF (k) = i(k) − i(k−NM ) (2.1)

where,

iF(k): Superimposed abnormal component current values for phase A, B and

C

i(k): Instantaneous current values for phase A, B and C

k: Sample index

NM : Multiple of Number of samples per power cycles

Both the references [9] and [21] have used NM = 2*N1, where N1 represents

the number of samples per power cycle. Abnormal components are very small un-

der steady state, normal operating conditions [2]. However during faults or other

switching events the abnormal components will be higher than certain threshold

value. There are two ways to determine the threshold value for a disturbance to

occur.

a. Using threshold on magnitude of fundamental frequency abnormal current

b. Using threshold on instantaneous abnormal current

a. Using threshold on magnitude of fundamental frequency abnormal

current

The fundamental component of the superimposed abnormal current waveform is

calculated using a Fourier transform. If the component exceeds a certain threshold

as established or determined by analyzing current cycles, a disturbance is detected.
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iF (MAG) > iTHRESHOLD (2.2)

where,

iF(MAG): Magnitude of Fundamental Frequency Abnormal current values for

phase A, B and C

i(THRESHOLD): Threshold values for phase A, B and C

Both references [21] and [9] have used a similar methods. The difference being,

[21] has performed a full cycle Fourier transform, whereas [9] has performed a half

cycle Fourier transform to obtain the fundamental component of abnormal current.

b. Using threshold on instantaneous abnormal current

This is presented in [14] for a threshold technique on instantaneous values of abnor-

mal components to detect arcing events.

|iF (k)| > iTHRESHOLD (2.3)

where,

iF(k): Absolute values of Abnormal current values for phase A, B and C

i(THRESHOLD): Threshold values for phase A, B and C

k: Sample index
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2.1.2 WAVELET CURRENT ANALYSIS

It is proposed in reference [21] to use a wavelet analysis technique to detect a fault

with a short duration ≤ 3 cycles. Using this technique the waveform can be ana-

lyzed using low frequency approximation coefficients and high frequency detail coeffi-

cients. The low frequency approximation coefficients can represent the fundamental

frequency component, while the high frequency detail coefficients can represent the

transient state [21]. There are two triggering methods, by which a decision about a

disturbance can be made:

a. Using approximate coefficients

b. Using detailed coefficients

a. Using approximate coefficients

Using low frequency (0 - 240 Hz) approximation coefficients, the following detection

rule is formulated.

RMSCR =
RMSlatest−half−cycle −RMSone−cycle−before

RMSone−cycle−=before

> THRESHOLD (2.4)

where,

RMS: Root mean Square values for phase A, B and C

RMSCR: A derived parameter for phase A, B and C

This rule is insensitive to noise because it is not related to the high frequency

components [22].
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b. Using detailed coefficients

Using high frequency (240 - 960 Hz) detailed coefficients, a disturbance is detected

when the following rule is satisfied.

ENGR =
Energylatest −Mean(Energypast)

STD(Energypast)
> THRESHOLD (2.5)

where,

Energylatest: Energy of the latest detail coefficients

Energypast: Array of energy of the past detail coefficients

MEAN: Average function

STD : Standard deviation function.

This rule has good performance in a low noise environment. Since it does not

consider the low frequency component, it is insensitive to the slow change of funda-

mental frequency component [22].

2.1.3 FUNDAMENTAL FREQUENCY CURRENT METHOD

In reference [13], a technique has been presented to detect faults in medium voltage

circuits.

i(MAG) > iTHRESHOLD (2.6)

where,

i(MAG): Magnitude of Fundamental Frequency current values for phase A, B

and C
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i(THRESHOLD): Threshold values for phase A, B and C

In order to obtain the fundamental component of the waveform, a DFT on every

one eighth of a power cycle is performed and the magnitude of the fundamental

component of the waveform is compared with a threshold value. If the fundamen-

tal component of the current waveform exceeds certain threshold a disturbance is

detected.

2.1.4 VOLTAGE WAVEFORM METHOD

To detect a disturbance by comparing consecutive cycles of a voltage waveform, the

following methods have been adapted in literature [22].

(1) A voltage waveform is superimposed by shifting the waveform by one

power frequency cycles. If the resulting voltage abnormal component exceeds a

certain threshold for a certain amount of duration, a disturbance is considered to

be detected.

(2) A difference of the consecutive cycles squared is calculated for the voltage

waveform . The absolute values of the difference forms MAVSA (Mean Absolute

Variation in Squared Amplitude). The MAVSA value is compared with a certain

threshold value, and if it exceeds the threshold, a disturbance is detected.

(3) The RMS value of the voltage differential waveform is calculated after

the voltage waveform is superimposed by shifting the waveform by one power fre-

quency cycle. A percentage value is calculated as the ratio of the RMS value of the

differential cycle to that of a healthy cycle. If the percentage value exceeds a certain
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threshold, a disturbance is detected.

The advantages and disadvantages of voltage waveform methods are discussed

in [22]. The first method is prone to detect a lot of inconsequential disturbances

or miss important ones, if the threshold value is not selected carefully. The third

method calculates a percentage value based on an entire cycle, it may not detect

those disturbances which have a duration of less than a cycle.

2.1.5 WAVELET VOLTAGE ANALYSIS

To detect voltage transients, fundamental frequency and high frequency components

are analyzed in reference [16]. Peaks in the high frequency components are compared

with a part of the signal which is assumed to be disturbance-free [22].

2.1.6 COMPOSITE METHOD

A composite method using voltage and current signals to detect disturbances is

presented in [2]. The running average of the following parameters are considered for

the purpose of disturbance detection [22].

a. Components below 16th harmonic are computed for each current input, for

every period of two cycles.

b. Current and voltage RMS values are computed for each input, for every

period of two cycles.

c. The real, reactive, and apparent power are computed for every period of

two cycles.
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d. Energy is computed for the high-frequency current channels.

Then,

X(i) > α ∗XMEAN

X(i) < β ∗XMEAN

(2.7)

where,

X(i): The ith value of any of the above parameters

X(MEAN): The running average value

α : The coefficient (larger than 1) corresponding to the upper threshold

β : The coefficient (less than 1) corresponding to the lower threshold

Post calculation of the above parameters, each parameter is compared with an

upper and a lower threshold value, every two cycles interval. If, any of the parame-

ters exceeds the thresholds, a disturbance is detected.

2.2 METHOD OF DETECTING EVENTS

An abnormality detection method has been proposed in [22] by combining the ad-

vantages of the methods in literature. It follows the principle of using a differential

waveform between two consecutive cycles. Then the RMS of each segment is cal-

culated after dividing the difference waveform into M segments. This method de-

tects the disturbance based on a threshold technique. Moreover, another detection

method has also been proposed in [22], by analysing the RMS value of the current
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and voltage signal space.The RMS value of the signal is evaluated in every time

period and if the value exceeds a certain threshold, there is an event detected.

Figure 2.1 shows the comparison of current and voltage waveform and the RMS

techniques discussed above, along with the ability of the techniques to capture ab-

normalities or disturbances [22].

Figure 2.1: Plot for comparison of various techniques in terms of percentages of
events detected [22]

The bar graph in Figure 2.1 shows that the current waveform technique has the

highest capability in capturing disturbances compared to other techniques. The ap-

proach proposed in this research work uses current signal abnormalities as the basis

for detection of events. In order to address to the diverse set of signatures associated

with every event, this study uses voltage signal abnormalities, fundamental compo-

nent powers as well as harmonic component powers, fundamental power factor, and

the current and voltage harmonics at and below the 15th harmonic. Instead of using

the two cycle difference used in [14], or a consecutive cycle difference as used in [22],

this study analyses multiple cycle difference starting from 3 cycle to 60 cycle, which
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is one complete power frequency cycle. After calculating the ‘X’ cycle difference

of the current signal, where ‘X’ indicates the number of cycles of difference for the

waveform; the segment RMS value of the differential waveform gets determined, as

described in the Section 2.3.1.

Moreover, instead of using the threshold technique to detect disturbances, this

method first obtains a detection signal by using a moving window over 3 cycles

for the ‘X’ cycle differential waveform as well as using a 3 cycle moving window for

calculating the frequency domain components of the signal. Then, this study uses an

Automatic Multi-Scale based Peak Detection algorithm (discussed in Section 4.1.1)

in order to detect the peaks which specify the disturbance and has encapsulated the

events, in the sense of deriving the starting time and ending time of the events.

The procedure employed in the majority of peak detection algorithms is as follows,

the original signal is pre-processed to improve the performance of the subsequent

stages, and then a detection function is derived at a lower sampling rate, to which

a peak-picking algorithm is applied to locate the peaks [1]. In order to detect the

events, this work has transformed the input waveform into a detection function

which provides the positions of the events in the time domain. This is described in

Chapter 3 and Chapter 4.

2.3 DETAILS OF ALGORITHM

In order to detect a Waveform abnormality in the current waveform, a modified

waveform detection method is implemented. In this method, the differential current
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signal between ‘nc’ consecutive cycles is calculated. The segment RMS value is

calculated by segmenting the resulting waveform as described in the following steps.

Step 1: The original signal and the signal after moving ‘ns’ sample points

are superimposed to eliminate normal load component.

where,

ns =

(
fs
f0

)
∗ nc (2.8)

and,

ns: Number of sample points of difference

fs: Sampling frequency value of the input signal

f0: Fundamental frequency value of the input signal

nc: Number of cycles of difference

Step 2: The resulting signal is divided into M segments.

Step 3: The RMS value for each segment of the signal is calculated to obtain

the detection function.

Step 4: An event is detected using the Modified Multi-Scale Based Peak de-

tection method as explained in Section 4.1.1 on the detection function obtained

in Step 3.

The use of ‘nc ’ cycles is empirical based on it’s performance of smoothing the

signal as well as retaining enough information to detect events at a later stage.
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2.3.1 EQUATIONS

In order to calculate the detection function by calculating the differential current

signal between ‘nc’ consecutive cycles, the original signal is being superimposed by

the same signal, shifted by ns samples, as described below:

ID(k) = I(k) − I(k−ns) (2.9)

where,

I : Instantaneous current values for phase A, B and C

ID : Instantaneous differential current values for phase A, B and C

k: Sample index

ns: Number of sample points of difference

The above method is applied to the mains as well as to each of the 3 phase output

signals from the 5 feeders. The segment RMS value of the differential current signal

is calculated as shown in 2.10 and 2.11, in order to determine the precise locations

easily.

VRMS (k) =

√∑k
n=k−nrms+1 VD (k)2

(nrms)
, ∀ k ∈ [1, length(VD)] (2.10)

IRMS (k) =

√∑k
n=k−nrms+1 ID (k)2

(nrms)
, ∀ k ∈ [1, length(ID)] (2.11)

nrms =
ns

M
(2.12)
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where,

VD: Instantaneous differential voltage values for phase A, B and C

VRMS : Segment RMS value of voltage signals for phase A, B and C

ID: Instantaneous Differential current values for phase A, B and C

IRMS : Segment RMS value content of current signals for phase A, B and C

k: Sample index

ns: Number of sample points of difference

M : The number of segments, the differential signal is filtered over, per nc

number of cycles

nrms: The number of sample points in each segment of the signal

In order to calculate the segment RMS value of the signal, as performed above,

the superimposed and shifted signal is squared. The resulting signal is then divided

into M segments. Then, the mean value of each segment is calculated over nrms

number of sample points in each segment of the signal. Lastly the square root of the

signal hence obtained, providing the segment RMS value of the signal. It is repeated

for the complete length of the signal for all the sample points.

The plot showing the various steps of the segment RMS value calculation is shown

in Figures 2.2a, 2.2b and 2.2c.

Comparing Figures 2.2c and 2.2b with the differential current signal shown in

Figure 2.2a, it is evident that peaks are smooth and distinguishable from non peaks.
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(a) Differential current waveform in Amps

(b) Mean value of squared differential current waveform in square Amps

(c) Detection function waveform in Amps

Figure 2.2: Plots for waveform lasting for a period from 21.0 min to 24.5 min. (a)
Plot for differential current waveform in Amperes. (b) Plot for the mean value of
squared differential current waveform in squared Amperes. (c) Plot for detection
function waveform in Amperes.
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2.3.2 EXAMPLES

This section demonstrates the concepts expressed above using data for a duration of

one day. The value of ‘nc’ is taken to be ‘30’ and, the value of ‘M’ is chosen to be 100,

for this study. For the purpose of illustration, Figure 2.3 shows the superposition of

the original signal with another signal after moving it by nc = 3 cycles.

Figure 2.3: Illustration of the method, showing the original and shifted waveforms
(nc = 3 cycles).

The method explained above has been implemented on a 1 sec portion of the

signal data set. The resulting waveform is shown in Figures 2.4a and 2.4b.
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(a)

(b)

Figure 2.4: Plots for events. (a) Plot for an event in the current waveform in amperes
lasting for a period of 33.6654 min to 33.6662 min. (b) Plot of current waveform in
amperes against time in minutes, in presence of an event for the period of 33.662
min to 33.672 min.

In Figure 2.4a and Figure 2.4b, the blue waveform indicates the current signal

at time ‘t’ and red waveform on the background represents the waveform after t+(3

cycle). As is evident from Figure 2.4a and Figure 2.4b, the method isolates the

events and the transient value detects the disturbance. In Figure 2.4a, after the

transient ends at time of 33.6662 min, the steady state is regained.
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Using the real data from the mains circuit, the impact of the value of ‘nc’ is

examined over a range of multiple cycles.

(a)

(b)

(c)

Figure 2.5: Comparison of cycle difference for the differential current waveform over
time duration of 13 min to 14 min. (a) The top waveform represents the segment
RMS value of the 3 cycle differential current waveform. (b) As for (a) but cycle
difference over 30 cycles. (c) As for (a) but cycle difference over 60 cycles.

In Figure 2.5a, the 3 cycle differential waveform represents a noisy signal, and in

Figure 2.5c the 60 cycle difference waveform is very smooth. Neither of these may

be appropriate to be considered as a reference to detect events. But, the waveform

shown in Figure 2.5b, represents an adequate combination of smoothed curve with

spikes at the time of events.
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(a)

(b)

(c)

(d)

Figure 2.6: Segment RMS value of differential current waveform normalized to its
mean value against time in minutes for multiple instances of events. (a) The plot
illustrates the waveform from 11 min to 16 min. (b) The plot shows a narrower
range of 11 min to 11.5 min. (c) As (a) but over different range of 54.58 min to
54.68 min and, (d) As (a) but over different range of 33.6 min to 35 min.
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The reason for this can be attributed to the observation that, the 3 cycle dif-

ference captures only fast transients, whereas the 30 cycle difference waveform is

capable of capturing both fast and slow transients. Hence, 30 Cycle waveform dif-

ference is chosen here for better event detection techniques. Moreover, the value of

‘M’ has been considered as 100 in this study. Hence, each segment comprises of 25

sample points

In Figure 2.6, it is easy to distinguish peaks visually. An important task is to

program an algorithm to detect peaks automatically. This is not a trivial task as a

simple threshold technique will fail. The topic of peak detection is addressed in the

next chapter.



Chapter 3

FEATURE SELECTION

3.1 COMPARISON OF FEATURE SELECTION

METHODS

In the literature, features for classification in power systems rely on observed power

measurements. This is potentially limiting with more types of data and tools at

hand to apply to the problem. For example with Machine Learning approaches

unsupervised methods can find patterns for classification using non-traditional data

sets and features.

3.1.1 FEATURE SELECTION

The purpose of this chapter is to define the features for the events detected, so

that each event with ‘n’ number of unique features can be associated with an ‘n’

dimensional feature subspace. It becomes then easier to compare the events in terms

of distance in the particular subspace and do further event analysis.

The selection of features is done based on the following factors:

28
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1: Transient behaviors are primarily distinct.

2: Transient features do not overlap with steady state signatures

3: Avoid a major limitation of transient state features requiring a high sampling

rate requirement in order to capture the transients

4: Allows Non-Traditional features to be used with the model, such as On and Off

duration distribution and Frequency of Appliance Usage

Taking into consideration all the advantage and disadvantages of the features as

discussed in Table 3.1, a set of potential features are shown in Figure 3.1. In this

case, both the steady state and transient characteristics are considered as features.

Features

Active

Power

Reactive

Power

Apparent

Power

Distortion

Power

Fundamental

component

Power

Factor

Harmonic

Powers

Frequency

Com-

ponents

Non-

Traditional

Features

Figure 3.1: Useful features for classification
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Figures 3.2a and Figure 3.2b illustrate that the features can be used as load

signatures in the presence of an event.

(a)

(b)

Figure 3.2: Features representing two instances of events. (a) Plot for the events
during the period of 13 min to 14 min. The top plot illustrates segment RMS value
of differential current as the detection signal. The bottom plot shows transient
features of a particular event. (b) As (a) but over a narrower range of 33.6 min to
35 min.

The primary reason for using Transient features is that they are primarily distinct

compared to steady state signatures. Table 3.1 presents some of the advantages and

disadvantages of transient feature selection.
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Transient

Methods
Features Advantages Shortcomings

Transient

Components

i. Power ii.

Power Factor

Same Power

draw

characteristics

can be easily

differentiated

i. Continuous

monitoring ii.

High sampling

rate

Requirement

Start up current

transient

component

i. Current

spikes, ii. Event

duration iii.

Event shape iv.

Transient

response Time

Distinct

transient

behavior in

multiple load

operation

Scenario

Poor detection

of simultaneous

activation and

deactivation of

components

Transient

Frequency

Components

Frequency

Analysis of

transient event

Distinguish

event behavior

in multiple load

operation

scenario

i Variable

definition of an

Event

ii.Expensive

computation

Table 3.1: Features, advantages and disadvantages of transient feature selection

The following section discusses the calculations used for obtaining the features

discussed above. The analysis on steady state features made on the sample points

using k-means technique, is discussed in Section 3.5.2. Further, in Chapter 5, the

clustering of event sets using unsupervised Machine Learning techniques as well as
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by training models using a Neural Network is presented.

3.2 DETAILS OF COMPUTATIONS

This section explains the calculations to obtain the multiple features. For the pur-

pose of calculating the powers and power factor, IEEE 1459-2010 standard is used

[10].

3.2.1 HARMONIC POWER CALCULATIONS

The voltage and current at any moment of time ‘t’ can be defined as follows:

V (t) =
√

2 V cos

(
2πf

(
tV +

θ

2πf

))
(3.1)

Ih (t) =
√

2 Ih cos

(
2πhf

(
tI(h) +

Φ

2πhf

))
(3.2)

where,

V : RMS value for power system frequency voltage (V)

Ih : RMS value for current of harmonic order h (A)

θ : Phase angle of the phasor V (rad)

Φ : Phase angle of power system frequency component of the phasor Ih (rad)

βh : Phase angle difference between the phasors V and Ih (rad)

tI(h) : Time reference of zero crossing for phasor Ih (s)

tV : Time reference of zero crossing for phasor V (s)

f: Power system frequency (Hz)

h : Harmonic order
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Calculation of Phase Difference

βh = [tI (h) − tV ] (sec)

=

[(
− Φ

2πhf

)
−
(
− θ

2πf

)]
(sec)

=

[
(θ − Φ

h
)

2πf

]
2πfh (rad)

= [θ ∗ h − Φ] (rad)

(3.3)

where,

tI(h) : Time reference of zero crossing for phasor Ih (s)

tV : Time reference of zero crossing for phasor V (s)

In this work, we calculate the angle components and magnitudes for the first 15

harmonics and these are used as features.

Instantaneous Power (W)

According to the IEEE 1459-2010 standard [5], for steady-state conditions, a non

sinusoidal periodical instantaneous power has two distinct components: the power

system frequency components and the remaining terms.

p = pa + pq (3.4)

where,

p : Instantaneous power (W)

pa : Instantaneous active power (W)
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pq : Instantaneous reactive power (VAR)

Active Power (W)

In Equation (3.4), the component pa is the instantaneous active power, which is

equal to the sum of harmonic active powers. It is produced by the active component

of the current i.e., the harmonic active power of order h is caused by the harmonic

voltage of order h and the component of the harmonic current of order h in phase

with the harmonic voltage of order h.

pa = V0I0 +
∑
h

VhIh cos βh [1 + cos(2hωt+ 2Φh) ] (3.5)

where,

pa : Instantaneous active power

V0 : Direct voltage term

I0 : Direct current term

Vh : RMS value for voltage of harmonic order h (V)

Ih : RMS value for current of harmonic order h (A)

βh : Phase angle difference between the phasors Vh and Ih (rad)

Φh : Phase angle of the phasor Ih (rad)

ω : Angular frequency 2πf (rad/s)

h : Harmonic Order
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Each instantaneous active power of order h has two terms:

i. Active, or real, harmonic power, and

ii. Intrinsic harmonic power

The intrinsic power is always present when net energy is transferred to the load.

This oscillating component does not contribute to net transfer of energy or to addi-

tional power loss in conductors.

The active power P, which is also called real power, is the average value of the

instantaneous power during the measurement time interval τ to τ + kT, and it can

be written as:

P (k) =
M∑
h=1

V h (k) I h (k) cos (βh (k)) (3.6)

where,

T = 1
f

: The cycle time (s)

k : A positive integer number

τ : The moment when the measurement starts

The above equation can be rewritten as:

P (k) = P1(k) + PH(k) (3.7)

The components P1 and PH are defined as follows:
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P1 (k) = V 1 (k) I 1 (k) cos (β1 (k)) (3.8)

and,

PH (k) =
∑
h6=1

V h (k) I h (k) cos (βh (k)) (3.9)

where,

P : Total average power or active power (W)

P1: Power system frequency active power (W)

PH : Harmonic active power (W)

Vh : RMS value for voltage of harmonic order h (V)

Ih : RMS value for current of harmonic order h (A)

βh : Phase angle difference between the phasors V and Ih (rad)

k: Sample index

h : Harmonic order

M : Highest Order of harmonic

Reactive Power (VAR)

In Equation (3.4), the component pq is the instantaneous reactive power. It is

produced by the reactive component of the current (i.e., the component that is in

quadrature with the voltage), which is mathematically defined as follows:
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pq = −
∑
h

VhIhsin(βh)sin(2hωt+ 2Φh)

+ 2
∑
p

∑
q

p 6=q

VqIpcos(qωt+ θq) cos(pωt+ Φp)

+
√

2 V0

∑
h

Ihcos(hωt+ Φh)

+
√

2 I0

∑
h

Vhcos(hωt+ θh)

(3.10)

where,

pq : Instantaneous reactive power (VAR)

Vh : RMS value harmonic voltage of order h (V)

Ih : RMS value harmonic current of order h (A)

βh : Phase angle difference between the phasors V and Ih (rad)

θh : Phase angle of the phasor Vh (rad)

Φh : Phase angle of the phasor Ih (rad)

ω : Angular frequency 2πf (rad/s)

h : Harmonic order

This energy component oscillates between the sources and the electromagnetic

energy stored within the magnetic field of the inductors and electric field of the

capacitors of electrical equipment. The average value of this rate of flow is zero, and

the net transfer of energy to the load is nil; but, these power oscillations do lead

indirectly to power loss (Joule and eddy-current) in the conductors.

The magnitude of the reactive power Q equals the amplitude of the oscillating
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instantaneous reactive power pq. According to Budeanu [3], the reactive power Q is

given by:

Q (k) =
M∑
h=1

(V h (k) I h (k) sin(βh (k)) (3.11)

The above equation can be rewritten as:

Q(k) = Q1(k) +QH(k) (3.12)

The components Q1 and QH are defined as follows:

Q1 (k) = VRMS 1 (k) IRMS 1 (k) sin (β1 (k)) (3.13)

and,

QH (k) =
∑
h6=1

(VRMS h (k) IRMS h (k) sin (βh (k)) (3.14)

where,

Q : Total Reactive power (VAR)

Q1 : Power system frequency reactive power (VAR)

QH : Harmonic reactive power (VAR)

βh : Phase angle difference between the phasors V and Ih (rad)

k: Sample index

h : Harmonic order

M : Highest order of harmonic
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Apparent Power

The apparent power ’S’ is the amount of active power that can be supplied to a

load, or a cluster of loads, under ideal conditions. The ideal conditions may assume

the load supplied with sinusoidal voltage and current. The loads are compensated

by means of active or passive devices such that the line current is sinusoidal and in

phase with the voltage that, ideally, is also adjusted to be sinusoidal.

Apparent Power is the product of the root mean square (RMS) voltage and the

RMS current defined as follows:

S(k) = V (k) ∗ I(k) (3.15)

Distortion Power

The relationship of Active Power and Reactive Power with Apparent Power based

on Equations (3.6), (3.11) and (3.15), is defined by the following inequality [4]:

S2 ≥ P 2 +Q2 (3.16)

The difference is due to the harmonic content of the signals. In 1927, Budeanu

introduced the term distortion power [3], which is defined in terms of Active Power

and Reactive Power as follows:

S(k)2 = P (k)2 +Q(k)2 +D(k)2 (3.17)

where D is the distortion power. The distortion power can be expressed as
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following:

D2 = S2 − P 2 −Q2

=


√√√√ M∑

h=1

V 2
h

√√√√ M∑
h=1

I2
h

 =
∑
p

∑
q

p 6=q

[VqIp[VqIp − 2 VpIq cosβq − βp] ]
(3.18)

Power Factor

S2 = (V I)2

= (V 2
1 + V 2

H )(I 2
1 + I 2

H )

= (V1I1)2 + (V1IH)2 + (VHI1)2 + (VHIH)2

= (S1)2 + (DI)
2 + (DV )2 + (SH)2

= (S1)2 + (SN)2

(3.19)

where,

S1 = (V1 I1)

DI = (V1 IH)

DV = (VH I1)

SH = (VH IH)

(3.20)

and,

S : Apparent Power (VA)

S1 : Power system frequency apparent power (VA)

SH : Harmonic apparent power (VA)

V1 : RMS value of power system frequency voltage (V)

VH : RMS value of non-power system frequency voltage (V)
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I1 : RMS values of power system frequency current (A)

IH : RMS values of non-power system frequency current (A)

DI : Current distortion power (VAR)

DV : Voltage distortion power (VAR)

Since, the harmonics in voltage is negligible, from the Equation (3.19), further

reduction leads to following:

(SN)2 = (DI)
2 + (DV )2 + (SH)2

= (V1 IH)

= [(S1) (THDI)]
2

[
SN

S1

]
2

= (THDI)
2

(3.21)

Now the Power factor is defined as follows:

PF =
P

S

=
(P1 + PH)√
(S2

1 + S2
N)

=

P1

S1
[1 + (P1+PH)√

(S2
1+S2

N )
]√

1 + (SN

S1
)2)

(3.22)

PF =
P

S

=
(PF1)√

1 + THD2
I

(3.23)

Where,:

PF1 = P1

S1
: Power system frequency component of Power factor

1 + PH

P1
= 1 : Assuming that Harmonic Active Power is negligible as compared
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to Power system frequency Active Power SN

S1
= THDI : Total Harmonic Dis-

tortion of Current Signal

3.3 FREQUENCY ANALYSIS OF SIGNAL

Harmonic analysis of the signal provides an important characteristics for detecting

and classifying electrical events [11]. Hence, the frequency components of the current

signal are calculated from the 2nd order harmonic to the 15th order harmonic.

First, the original current signal is analyzed in the frequency domain using the

Fast Fourier transform. The total harmonic distortion to the 15th order harmonic

is calculated. As explained in [15], the ratio of the power of the fundamental com-

ponent to the power of all non-harmonic components, is a useful feature for each

event comparing the original current signal with the multiple frequency components

of the signal.

The frequency characteristics will later be used in Section 3.4, for the purpose of

feature selection in order to classify the events.
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3.3.1 CHANGES IN ACTIVE POWER, REACTIVE POWER,

& POWER FACTOR OF THE FUNDAMENTAL COM-

PONENT OF THE WAVEFORM

Figure 3.3: Illustration of the impact of features at the location of peaks in Detection
function signal. The top Figure plots the detection function against time in minutes
for a period of 13 minutes to 14 minutes; The bottom figure plots the features.

Figure 3.3 illustrates the plots of segments of the RMS value of the differential

current along with multiple features at the instances of disturbances. The feature

changes at the instances corroborate the events. This provides an opportunity to

find the correlations between the features for characterizing the events, and then

cluster them together into groups as will be discussed in Chapter 5.
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3.4 METHOD OF FEATURE SELECTION

Selecting features which make greater distinction between events will help the clus-

tering technique to perform better. This work has attempted to perform feature

selection analysis on the set of features discussed above. For this purpose, a super-

vised machine learning model is used. For supervision, 25% of the sample points in a

smaller portion of the data, taken out solely for the purpose of training and testing,

is manually marked for events. Once a quarter of the sample points in the data is

distinguished by events and non-events sample points, multiple set of features are

used to train the classification models. In order to train the models based on the

data selected, multiple features are used to identify the set of features that will give

the highest performance with most of the models.

A 7-fold cross validation is used to reduce over fitting. A k-fold cross validation

partitions the data into k disjoint sets. An operation performed on each set pro-

vides a performance metric in terms of the predictive accuracy of the trained model.

For each set of data points, a model is trained using the data points in all of the

sets except the selected set and the performance of the model is evaluated based on

all the data points of the selected set.

The average error over all the sets is calculated and recorded for the purpose of

comparison. The performances of the multiple models are analyzed and presented

in the Table 3.2. It illustrates the performance of the models in terms of error while

predicting the classification of the sample points that belong to one of either event

or non-event classes.
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Sl. No. Features Best Classifier Accuracy

1 a + b + c + d Fine KNN10 99.8

2 a + b + c Fine KNN10 99.2

3 a + b Fine KNN10 98.4

4 a
Weighted

KNN100

98.9

Table 3.2: Model Performance comparison for feature selection

where,

a.

Feature 1: Differential current

Feature 2: Fundamental active power

Feature 3: Fundamental reactive power

Feature 4: Harmonic reactive power

Feature 5: Fundamental power factor

b.

Features 6-20: Current harmonics magnitude from the 2nd order to the 15th

order and fundamental component magnitude.

c.

Feature 21-35: Current harmonics phase from the 2nd order to the 15th order

and fundamental component phase.

d.
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Feature 36-66: Voltage harmonics magnitude and phase from the 2nd order to

the 15th order and fundamental component magnitude and phase.

Trained ModelK indicates the model is trained with ‘k’ number of nearest

neighbor points to classify each point for the purpose of prediction.

Through empirical considerations as shown in table 3.2, the following set of

features are selected for analyzing the events in following sections.

Feature 1. Segment RMS value of Differential Current

Feature 2. Fundamental Active Power

Feature 3. Fundamental reactive power

Feature 4. Harmonic Reactive Power

Feature 5. Fundamental Power Factor

Feature 6-20. Current harmonics magnitude from the 2nd order to the 15th

order and fundamental component magnitude.

Feature 21-35. Current harmonics phase from the 2nd order to the 15th order

and fundamental component phase.

Feature 36-66. Voltage harmonics magnitude and phase from the 2nd order

to the 15th order and fundamental component magnitude and phase.

3.5 K-MEANS CLUSTERING

After the preliminary task of feature selection is completed, are clustered, as dis-

cussed in detail in this section.
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3.5.1 DEFINING THE NUMBER OF CLUSTERS

In a clustering method, the first challenge is determining the number of clusters.

Generally, the supervisor provides the number of clusters, to which the Clustering

technique finds the suitable fit for each input sample point or sample event.

In a clustering method, the sum of distances from each cluster centroid to the sam-

ple points within that cluster, for all the clusters, reduces as the number of cluster

increases. This can be attributed partly to the fact that, as the number of clusters

increase, fewer sample points are associated with each cluster. Ultimately the sum

becomes zero when the total number of sample points equals the total number of

clusters, as illustrated in Figure 2.4b. This can alternatively be visualized in terms

of a trade off between the expected performance benefit, and the number of clusters.

Figure 3.4: Plot for sum of distances from each cluster centroid to the sample points
within that cluster, against the number of clusters

In order to define the number of clusters among the input data points, a method

has been implemented based on a knee detection approach [19]. So, the curve on



48

which the analysis of point has been made is the curve that depicts the sum of

distances from each cluster centroid to the sample points within that cluster, for all

the clusters, against the number of clusters. In order to find the the knee points in

the normalized curve, the point is calculated where the curve flattens out. This can

be defined as the instance where the rate of increase/decrease of reduces significantly.

Mathematically, it is based on calculating the Euclidean distance between each point

on the curve and a vector ~V which connects the first and last point on the curve.

The Knee Point is obtained by calculating the point on the curve with the maximum

distance from the vector connecting the first and last point on the curve, as shown

in the Equations (3.24) and (3.25).

~dk = ~Ak − ~AV ∀ k ∈ 1, 2, . . ., N (3.24)

VKneePoint = arg max (dk) ∀ k ∈ 1, 2, . . ., N (3.25)

where,

~dk : The perpendicular distance between ~V and the points on the curve

~V : Vector connecting the first and last point on the curve shown in figure 3.4

~Ak : Vector connecting the first point and the points on curve

~AV : Projection Vector of ~A on ~V

VKneePoint : The Knee point value

N : Maximum index of iteration in figure 3.4
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3.5.2 CLUSTERING OF SAMPLE POINTS

After analyzing the performance of the models with multiple trial sets of features, a

particular set is selected which provides the highest performance. In order to form

the clusters of similar events in the event space, a k-means algorithm is used over

the set of sample points which belong to the class of events. The knee/elbow point

technique yields 38 groups for this particular data set. The Figure 3.5 illustrates

three of these 38 groups.

(a)

(b)

(c)

Figure 3.5: Illustration of k-means clustering on the sample points of events. (a) The
top waveform represents the segment RMS value of the 3 cycle differential current
waveform and the bottom plot illustrates a selected set of features, for the group
number 17. (b) As (a) but for group number 21. (c) As (a) but for group number
36.
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3.6 DISCUSSION

The clustering analysis made on the sample points of the events using the k-means

clustering technique resulted in 38 clusters. The result may not be efficient in terms

of clustering, as the signatures in one event may be similar to other events and hence

they may be clustered together. The objective is to cluster all the sample points

in a particular event in one cluster. However, using k-means algorithm for cluster-

ing using sample points results in formation of partial clusters. Partial clusters are

formed, when one fraction of sample points from one event form one cluster and

another fraction of sample points from the same event form a second cluster.

To prevent the uncertainty in classification of events, each event is assumed to be

represented by a multitude of Statistical measures for every feature set as discussed

in Chapter 5. To calculate the features for a particular event, the objective is to

identify the start and end of a particular event. The method to identify the peaks

and the events has been discussed in Chapter 4.



Chapter 4

LOAD ANALYSIS

4.1 METHODS OF LOAD ANALYSIS

This research study proposes analysis of features during a transient to identify loads.

These include power, power factor and frequency components. This will help in

analyzing power demand in a better manner and improved performance of load op-

eration can also be achieved.

In order to achieve this, the time duration of the event needs to be calculated. For

this purpose the starting location of the event and end of the event needs to be de-

tected. This was achieved by implementing the Automatic Multi-scale based Peak

Detection (AMPD) algorithm for detection of peaks in noisy periodic and quasi-

periodic signals [20], a method by Scholkmann Boss and Wolf. This is described in

the following subsection. Further modifications have been made to the algorithm

and a Modified Multi-scale Peak detection (MMPD) Algorithm is introduced in this

work. A significant performance improvement is observed.

51
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4.1.1 AUTOMATIC MULTI-SCALE BASED PEAK DE-

TECTION ALGORITHM

According to the AMPD algorithm, for a given univariate uniformly sampled signal

x = [x1, x2, ..., xi, ..., xN ], in order to obtain the periodic or quasi-periodic peaks,

the following steps are to be followed:

Step 1: The Local Maxima Scalogram matrix (LMS) ‘M’ of Signal ‘x’ is

calculated

a. Signal x is linearly detrended.

b. Local maxima are determined using a moving window approach for

every scale ‘k’, where k = 1, 2, ..., L | L = d N
2
e - 1 and i = k+2, ..., N−k+1,

according to the following.

mk, i =


0,

α + RV,

(xi−1 > xi−k−1) ∩ (xi−1 > xi+k−1)

otherwise
(4.1)

where,

RV := Uniformly distributed random number

α : A constant Factor

Step 2: Row wise summation of the LMS matrix M

γk =
N∑
i=1

m k, i ∀ k ∈ 1, 2, . . ., L (4.2)

a. vector γ has the information about local maxima (scale dependent

distribution of zeros)
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b. The global minimum value of γ represents the scale with the most local

maxima.

λ = arg min (γk) (4.3)

Step 3: Reshape LMS Matrix ‘M’ by removing all elements belonging to

scales greater than λ.

Step 4: Finally, the peaks are detected.

a. The column wise Standard Deviation σi is calculated.

b. For all the indices for which the σi = 0 holds true ∀ i = 1 to N, there

exists a peak.

Figure 4.1: Plot for detection of maximas of differential current segment RMS value
with a window threshold value of 2499, and a constant minimum threshold of 40 A,
for a day
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4.1.2 MODIFIED MULTI-SCALE BASED PEAK DETEC-

TION ALGORITHM

In the AMPD algorithm, the multi scale operation has been performed in a moving

window approach for every scale ‘k’, where k = 1, 2, ..., L | L = d N
2
e - 1, in order

to obtain the Local Maxima Scalogram matrix. However, the calculation leads to

longer jumps over far fetched values with distant indices. Hence, the performance

is slowed down. A Modified Multi-Scale based Peak Detection (MMPD), splits the

given univariate uniformly sampled signal x = [x1, x2, ..., xi, ..., xN ] into multiple

sections based on the window size of ‘wLMS’, in order to obtain a smaller sized LMS

matrices. As a result the amount of jumps needed to perform the operation for LMS

becomes smaller over values having low indices from the base index, improving the

speed of MMPD significantly. The comparison in speeds of AMPD against MMPD

algorithm is discussed and illustrated in Table 4.1.

The modifications in MMPD are described as followings:

Modification 1: Windowing: Before Step 1 operation of AMPD, the given

univariate uniformly sampled signal ‘x’ is divided into multiple sections, with

each section having a length equal to the window length of wLMS.

Modification 2: Complete element interaction: For Step 2 operation

of AMPD, in order to calculate the Local Maxima Scalogram matrix ‘M’ for

each segment of the Signal ‘x’, the relationship between every element is de-

termined for each scale, in order to ensure interaction among all the elements

for calculating the scale dependent distribution of zeros, instead of the moving
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window approach for every scale ‘k’ in case of AMPD.

Modification 3: Reflection along edges: Since multiscale operation is not

possible on samples in the first and last window; reflection of the samples in

the first and last window only, is performed along the first and last element.

This is done in order to enable interaction between every single element. The

reflection is performed by the addition of elements to the beginning and to the

end of the vector, which is shown as the following:

x(i−wLMS) = x(i)

∀ i ∈ { 1, 2, 3, . . ., (wLMS − 2), (wLMS − 1), wLMS}

&,

x(j+N−wLMS) = x(j)

∀ j ∈ { 1, 2, 3, . . ., (wLMS − 2), (wLMS − 1), wLMS}

(4.4)

where,

x: Given univariate uniformly sampled signal

N: Length of the signal ‘x’

wLMS: Window size along which the operation of MMPD is performed

Modification 4: Constant value Assignment: For assigning values to

each element of the Local Maxima Scalogram matrix ‘M’, the Uniformly dis-

tributed Random Numbers get replaced with a constant value α.

Modification 5: Column wise Summation replace Standard Devi-

ation calculation: In Step 4 operation of AMPD, in order to obtain the
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indices of the peaks, the sum of the columns of the reshaped LMS matrix after

removing rows corresponding to values greater than the scale with the most

local maxima, reveals important aspects about the peaks of the input signal

‘x’. Moreover, as the column wise sum of the Reshaped LMS matrix, is a

vector which produces zero values at the indices where the signal forms peaks,

as shown in Figure 4.3, it is easier to obtain the peaks in the real signal ‘x’.

Mathematically, the MMPD algorithm can be implemented to a given univariate

uniformly sampled signal x = [x1, x2, ..., xi, ..., xN ], as follows:

Step 1: The Local Maxima Scalogram matrix (LMS) ‘M’ of Signal ‘x’ is

calculated

a. Signal x is linearly detrended.

b. Local maxima are determined using a moving window approach for

every scale ‘k’, where k = 1, 2, ..., L | L = d N
2
e - 1 according to the following.

mk, i =


0,

α,

(xj > xwLMS+i−k−1) ∩ (xj > xwLMS+i+k−1)

otherwise

∀ j ∈ {nLMS(y) + 1, nLMS(y) + 2, . . ., nLMS(y) + wLMS − 1,

nLMS(y) + wLMS} ∪ {nLMS

(⌊
N

wLMS

⌋)
+ 1, nLMS

(⌊
N

wLMS

⌋)
+ 2, . . ., N}

&

∀ y ∈ {1, 2, 3, ..., (b N

wLMS

c)}
(4.5)
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where,

α : A constant value

x: Given univariate uniformly sampled signal

N: Length of the signal ‘x’

wLMS: Window size along which the operation of MMPD is performed

nLMS : {0, 1 ∗ wLMS, 2 ∗ wLMS, 3 ∗ wLMS, . . ., b N
wLMS

c ∗ wLMS}

Step 2: Row wise summation of the LMS matrix M

γk =
N∑
i=1

m k, i ∀ k ∈ 1, 2, . . ., L (4.6)

a. vector γ has the information about local maxima (scale dependent

distribution of zeros)

b. The global minimum value of γ represents the scale with the most local

maxima.

λ = arg min (γk) (4.7)

Step 3: Reshape LMS Matrix ‘M’ by removing all elements belonging to

scales greater than λ.

Step 4: Finally, the peaks are detected.

a. The column wise Summation vector
∑

i, ∀ i = 1 to N is calculated.

b. All the indices for which the
∑

i = 0 holds true ∀ i = 1 to N, there

exists a peak.
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(a)

(b)

Figure 4.2: Comparison of Peak detection methods using MMPD and AMPD algo-
rithms. (a) The plot illustrates the Input waveform along with detected peaks using
MMPD algorithm for a period of 24 minutes. (b) As (a) but using AMPD.

Figure 4.3, illustrates the comparison in terms of Local Maxima Scalogram

(LMS) matrix values, for MMPD as well as for AMPD. The crimson color waveform

shows the LMS matrix values corresponding to the blue color detection function

waveform. As can be observed from the waveform shown, LMS matrix values for
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MMPD are very large, which can be attributed to the interaction of every single

variable rather than a V-shape formation in the case of AMPD while forming the

LMS matrix. However, in case of AMPD, the LMS matrix values are almost always

less than 1 and hence cannot be observed easily in the figure.

(a)

(b)

Figure 4.3: Plot for comparison of Local Scalogram Matrices for both the methods
of MMPD as well as AMPD. (a) The plot illustrates the original signal along with
the sum along column of LMS for MMPD. (b) As (a) but using AMPD.
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Further, in order to eliminate the peaks below certain threshold, determined for

the purpose, a moving window threshold approach has been implemented after using

MMPD to detect the peaks. The moving window approach makes the system to be

robust to outliers. It is implemented as described in Section 4.1.3.

In order to compare the peak detection techniques of AMPD and MMPD meth-

ods, Table 4.1 illustrates the difference in the speed for peak detection on a data set

of 3 minutes duration.

In this case, simulations are run 10 times, for each method, using the same data.

The minimum value among the multiple run is selected as the choice for the final

time. This process is repeated for different cases.

Process Time

(Seconds)
τAMPD τMMPD−250* τMMPD−2500*

Data 1 - Run 1 17.867576 0.209637 0.521135

Data 1 - Run 2 16.064284 0.295011 0.396275

Data 1 - Run 3 14.464602 0.112288 0.396813

Mean 16.132154 0.205645333 0.438074333

Table 4.1: Comparison of Performance in terms of simulation time in seconds, of
AMPD against MMPD for the purpose of peak detection

*: MMPD-x indicates ‘x’ windowed operation of peak detection using MMPD

algorithm as discussed in section 4.1.2.

In the case of the MMPD, the algorithm operates on smaller matrices as a result

of windowed operation. Further, because the random numbers used in AMPD are
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replaced with ‘1s’ in MMPD, the performance is improved as well. The MMPD

algorithm performs approximately two orders of magnitude faster than the previous

AMPD algorithm as is evident from the Table 4.1.

4.1.3 THRESHOLDING

A drawback of fixed a threshold, is that it produces many false negatives, as a result

of the wide range in the size of the peaks. But, in order to overcome the problem of

large differences in peak sizes in determining the real peaks, dynamic thresholding

can be used. Instead of using a fixed constant value to determine the peaks, the

threshold value changes as we move along the signal. It varies based on the window

size wThreshold and is determined by some statistical measure of the sample points

within that particular window. It uses the following steps:

Step 1: A fixed cutoff value is assigned.

Step 2: A Window Length wLMS is assigned over which median value is

calculated.

Step 3: For every window the median value of sample points within that

window duration is calculated.

Step 4: The median is added with the fixed cut off value in order to obtain

the new cutoff for each window.

In this work, a window length of 2499 sample points is considered. This corre-

sponds to 12.5 secs. An odd value window length is chosen in order to obtain an

integer median.
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4.1.4 DETECTION OF EVENTS

A major portion of the study depends on the events and their features. In order to

analyze the features, the starting point of the event as well as the end point for the

same event needs to be defined.

Figure 4.4 illustrates the characteristics of an event before it occurred, during the

transient, and after the transient settles. These characteristics are evident in Fig-

ure 4.5.

Figure 4.4: Plot for various features before, during, after a particular event

4.2 DISCUSSION

Once the start and end of a particular event is defined, the features for that particular

event are calculated using the detailed calculation explained in Section 3.2. Using

these features, clustering of events will be performed. The clustering analysis is

discussed in Chapter 5. By using several statistical measures for each event, Chapter
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Figure 4.5: Plot for multiple features corresponding to an event, determined by the
detection function signal

5 details the clustering algorithm and the methods for training models, to form event

clusters.



Chapter 5

CLUSTERING ANALYSIS

5.1 INTRODUCTION TO CLUSTERING

After the duration of the event is defined, and the unique features space associ-

ated with each event is calculated; the next step is to apply clustering techniques

described in this section. The purpose of clustering the events is to be able to seg-

regate the events into different categories and associate every single category with a

representative value for the feature space. Ultimately this may enable us to design

the definition for electronic loads.

A Self Organising Map (SOM) is used to cluster the events, detailed in the fol-

lowing section. In order to compare the performance of the clustering technique,

the clustered data is then used to train a Neural Network model and the classifica-

tion is done on the same data set using the Neural network model. This is discussed

in the Section 5.2.2.

64



65

5.2 CLUSTERING OF DYNAMIC FEATURES

USING SELF ORGANIZING MAPS AND

NEURAL NETWORK

The sample points in this case are organized into clusters of events. Next, a sta-

tistical analyses of the the sample points provide the information to be used for

clustering and analysis. The statistical variables that are used as the representative

points are as follows:

1. Area under the curve

2. Mean of the sample points for each event

3. Mode of the sample points for each event

4. Variance of the sample points for each event

5.2.1 CLUSTERING OF EVENTS USING SELF ORGA-

NIZING MAPS

The Self-Organizing Map (SOM) is an unsupervised clustering algorithm, which can

cluster large data sets. This technique uses neurons, each of which is associated with

a ‘weight’ vector in the input space. Each of the neurons has the same number of

dimension as the input vector. Thus, the SOM has the capability to describe the

mapping from higher-dimensional input space to a lower-dimensional space.
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In training, all the neurons are initialized to some random weight. Through multiple

iterations, the neurons gradually cluster around areas with a high density of data

points.

The SOM technique can be used as a Sequential Algorithm or as a Batch Algo-

rithm [12].

Sequential Algorithm:

The first sample point is introduced⇒ Best Matching Unit (BMU) for the vector

is chosen ⇒ Weight is updated ⇒ Next sample point is introduced ⇒ and so on.

Batch Algorithm:

All the sample points are introduced to the network ⇒ The BMU neuron for

each input vector is chosen ⇒ Each weight vector is updated based on the average

position of all of the input vectors for which it is a winner, or for which it is in the

neighborhood of a winner based on neighborhood radial distance (rN).

This work has used a Batch Algorithm, with neurons arranged in a 2-D Hexagonal

grid. The radial neighbourhood distance for BMU is considered rN = 1. The steps

used in SOM sequential algorithm in order to achieve the desired result is explained

below. The same can be extended to the Batch algorithm easily.

Step 1. Allocation of Best Matching Unit (BMU) : The Euclidean

distance between the randomly chosen Input vector ‘x’ and the weight vector of

all the neurons is calculated and the neuron with the least distance is assigned
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the term BMU.

‖di‖ = x− wi ∀ i ∈ 1, 2, . . ., N

BMU = arg min (di) ∀ i ∈ 1, 2, . . ., N

(5.1)

where,

BMU : Best Matching Unit

di = Distance between the input vector x and the neuron with weight wi

∀ i ∈ 1, 2, . . ., N

N = Maximum number of neurons defined by the supervisor

Step 2. Update : The weight vector ‘wi’ is updated according to Equation

(5.2).

wi(t+ 1) = wi(t) + α(t) θBMU,i(t)(x(t)− wi(t)) ∀ i ∈ 1, 2, . . ., N

θBMU,i = {i ∀ di ≤ rN} ∀ i ∈ 1, 2, . . ., N

(5.2)

The weights for all the neurons within a certain radius of the BMU neuron are

updated, using the Kohonen rule as shown in equation (5.2).

where,

t : Training Iteration index

wi(t) = Weight vector of neuron ’i’ at time t

α(t): Learning rate at time ’t’

θBMU,i : Neighborhood function which contains the indices of all the neurons

less than or equal to the radial distance rN from the BMU at time t
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N = Maximum number of neurons defined by the Supervisor

The training works in two phases:

In the first phase, iterate using a large initial learning rate and large neighbor-

hood radius is used.

In the second phase, a small initial learning rate and small neighborhood radius

are used, to fine tune the SOM.

Areas with multiple neurons represent clusters in the data. As the weights of the

neurons are updated, the neurons move in such a way that the overall shape of the

data can be reflected by the positioning of the neurons in the grid.

Figure 5.1 represents the results obtained for the Self Organizing Map used to clus-

ter the 283 events obtained y using the AMPD algorithm discussed in Section 4.1.1

on data worth 24 hours, using 82 features obtained as described in Section 3.1.1.

The clusters formed using the Self Organising Map technique are each associated

with multiple features. In order to plot the multidimensional clusters, the study

has used glyph plots with each axis representing a feature. Figure 5.2 shows the

visualization of different loads in each cluster formed using the Self Organizing map

technique. As is evident from the Figure 5.1(a), 3 Clusters have no events associated

with them. This is because Self Organizing Maps differ from other artificial neural

networks as they apply competitive learning as opposed to error-correction learning,
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(a)

(b)

Figure 5.1: Results of Clustering by using Self Organizing Map (a) SOM Sample
Hits: Plot of distribution of events in each neuron which it classifies, showing their
number. The relative number of events is encoded using the size of neurons. (b)
SOM Neighbor Weight Distance: Plot of neurons shown in gray-blue color with their
direct neighbor relations indicated by red lines. The distance of the neuron’s weight
vector with their neighbors is color coded with black being farthest to yellow being
closest.
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and they use a neighborhood function to preserve the topological distribution of the

input vectors they are trained on. Hence, the SOM network modeled here decided

that out of the 35 neurons, only 33 neurons are sufficient to cluster the data, which

can further be corroborated using the Neighbour weight distance as shown in Figure

5.1(b).

Figure 5.2: Visualization of multiple groups with limited set features, formed using
SOM

An illustration of clusters formed using SOM, plotted against time in minutes,

is shown in Figure 5.3.

5.2.2 PATTERN RECOGNITION AND CLASSIFICATION

USING NEURAL NETWORK

Neural Networks solve the classification problem for nonlinear sets by employing

hidden layers. The additional hidden layers can be interpreted geometrically as ad-

ditional hyperplane, which enhance the separation capacity of the network [8]. The

Input to the Neural Network as shown in the Figure 5.4.
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Figure 5.3: Visualization of detection function, with clustered groups distinguished
by colors, formed using SOM, against time in minutes

...

...
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Figure 5.4: A Neural Network, with with ’n’ features as input to the input layer
obtained as discussed in chapter 3, for each event detected as discussed in the section
4.1.1, having 10 hidden neurons, results in ’m’ output neurons with each neuron
representing a cluster.
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The hidden layer value of 10 has been obtained by empirical trials. Multiple

Hidden layer values were compared against a fixed output layer value. In this case,

the simulation is run 10 times for every change in the number of hidden layers, and

the minimum value among the multiple results obtained is selected as the choice for

that hidden layer. The process is repeated for different cases as mentioned in the

Table 5.1.

No. of Hidden

Layers

No. of Output

Layers
Cross Entropy

Mean Square

Error

1 35 0.0767 0.026

7 35 0.0437 0.0184

9 35 0.0378 0.0156

10 35 0.034 0.0145

30 35 0.0708 0.0233

100 35 0.0425 0.0143

Table 5.1: Comparison of performance in terms of errors, for the purpose of hidden
layer selection

Using Neural Network Graphical User Interface [12] and the outputs of Self Or-

ganizing Map Clustering, the model is trained on 70% of the clustering data set,

validation is performed on 15% of the data set, and testing is performed on the

remaining 15% of the data set.

The clusters formed using the neural network model are each associated with mul-

tiple features. In order to plot the multidimensional clusters, the study has used

glyph plots with each axis representing a feature. The Figure 5.5 shows the visu-
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alization of different loads in each cluster formed using the neural network model

trained using the data clusters obtained using SOM.

Figure 5.5: Visualization of multiple groups with limited set features, formed using
Neural Network model

An illustration of clusters formed using neural network model trained using the

clusters formed by SOM, plotted against time in minutes, is shown in Figure 5.6.

Figure 5.6: Visualization of detection function, against clustered groups distin-
guished by colors, formed using the Neural Network trained model
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5.3 SIGNAL SIMILARITY TECHNIQUES

Once the clustering is performed, in order to compare the performance of the algo-

rithm on the given data set, the correlation coefficient of events among each other

for every cluster is calculated, to obtain a correlation matrix.

This work uses the Pearson product moment correlation coefficient as the measure

of similarity between two signals. The Pearson product moment coefficient measures

the linear correlation between two events E1 and E2, and is defined as follows:

ρ (E1, E2) =
1

N − 1

N∑
i=1

(
E1i − µE1

σE1

)(
E2i − µE2

σE2

)
(5.3)

where,

ρ : Pearson product moment correlation coefficient

E1, E2 : Two different events

µ : The sample mean σ : The sample standard deviation

The challenge in finding the correlation between events is that the duration for

events varies. The correlation coefficient methods described above considers both

the signals to be of equal length. In order to achieve the objective of making the

length of each pair of events to be equal, the work uses a technique called Dynamic

Time Warping (DTW).
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5.3.1 DYNAMIC TIME WARPING

In case of two time series signals, X = [x1, x2, . . . , xi, . . . x|X|], and Y =

[y1, y2, . . . , yj, . . . , y|Y |], if one of the time series signals is shifted along

the time axes, the Euclidean distance considers the two signals far apart from each

other. Dynamic Time Warping (DTW) helps to overcome this limitation and pro-

vide an intuitive meaning to the similarity metric between the two time series signals.

Specifically, Dynamic Time Warping is defined as a method to obtain an optimized

alignment between two time series signals, which can be obtained, by either stretch-

ing or shrinking the time axes of the signals [17] . Two time series signals x and y,

are shown in Figure 5.7.

The objective is to create a path W = [w1, w2, . . . , wK ], where K is the

length of the warp path and the kth element of the warp path defined as wk = (i, j),

such that i is the index of time series signal x and j being that of the time series

signal y.

Figure 5.7: Plot of warping for two time series signals shifted along the time axis
[17]
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The objective is conditioned on the following constraints:

1: The warp path must start from the beginning of each of the time series

signals and finish at the end of both the signals.

2: The warp path must either be incremented by one index or stay the same,

to prevent overlapping of warp path.

3: Every index of the time series signals must be used

This can be formulated as an optimization problem:

minimize
W

K∑
k=1

D(w k, i , w k, j ) (5.4a)

subject to w0 = (1, 1)) (5.4b)

wK = (|x|, |y| (5.4c)

i ≤ i′ ≤ i+ 1 (5.4d)

j ≤ j′ ≤ j + 1 (5.4e)

where,

D(w k, i , w k, j ): The Euclidean distance between the indexes i and j of time

series signals x and y, corresponding to the kth element of the warp path W.

If, wk = (i, j) then, wk+1 = (i′, j′)

i is the index of time series signal x and j being that of the time series signal y

A programming approach has been used in this research for obtaining the optimised

warp path. Figure 5.8 shows the plot of warp path in the Cost function matrix for
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the two time series signals x and y, shown in Figure 5.7.

In Figure 5.7, the first index of time series Y is connected to first three indexes

of time series X. Hence the first three indexes in the cost function matrix holds the

values (1,1), (2,1), (3,1). The warp path in the cost function matrix in Figure 5.8

has been plotted in such a manner, taking into consideration the objective function

and the constraints as explained.

Figure 5.8: Plot of the cost function along with the warp path against time of time
series x and time of time series y [17]

5.3.2 RESULTS OF SIGNAL SIMILARITY TECHNIQUES

The correlation matrix hence obtained for clusters by using the Self Organizing Map

algorithm is plotted in the form of a Correlation Matrix, shown in Figure 5.9.
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Figure 5.9: Correlation matrix for clusters formed using Self Organizing Map algo-
rithm

After the training of the Neural Network model is done, clustering is performed

using 10 hidden neurons. Then, in order to compare the performance of the algo-

rithm on the given data set, the correlation coefficient of events among each other for

every cluster is calculated and is plotted as Correlation Matrix, shown in Figure 5.10.

The plots of the correlation matrix represents the correlation between each event

group with every other event groups obtained using the SOM method or by training

the Neural Network model. The higher the value of correlation, the more correlated

the event groups are, the highest value being 1. The lower correlation values move

towards zero. The color encoding is used to visualize the correlation matrix among

the event groups, where white represents the highest correlation among two events,

and black represents zero correlation between the events. Only half of the Correla-

tion matrix is shown in the figures, since it is a symmetrical matrix.
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Figure 5.10: Correlation matrix for clusters formed using Neural Network training
and clustering

The boundary shown by the lines indicates the self correlation values between pairs

of events belonging to each group. Hence, the ideal value expected is a set of 1s in

those triangles formed by enclosing of lines. However, practically we expect a much

whiter space and less yellow colored regions in those triangular regions enclosed by

lines. As is evident from the Figures 5.9 and 5.10, the self correlation values are

higher in case of the pair of events in clusters, formed by using SOM as compared

to the groups formed by training a Neural Network.

This may be attributed to the capability of SOM to be able to recognize the neigh-

boring input space. Further, SOM learns the distribution of the sample points while

clustering as well as the topology of the input training vector. The SOM performs

well for clustering the events with higher fidelity. Moreover, the poor performance of

Neural Network model as compared to SOM may be attributed to the fact that the
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training data for formation of clustering is obtained by the output of SOM. Hence,

the Neural Network considers the SOM to be the maximum performance and strives

to do its best in order to match the performance of SOM, rather than matching the

actual clusters. The performance of Neural Network is degraded, while striving for

matching the SOM performance.

5.4 CONCLUSION ON CLUSTERING TECH-

NIQUES

From the analysis performed on the clusters and their correlation Matrix, the Self

Organizing Map performs better than the Neural Network. The mean values of

magnitude for each odd harmonic component till the 15th harmonic value, for every

cluster is represented in the following Table 5.2. In the Table 5.2, Clusters 4, 11, and

19 have no values, because the Self Organising Map decided that only 33 neurons

are sufficient to cluster the data. Hence no events are grouped to the Clusters 4,

11, and 19. So the mean values of magnitude for each odd harmonic components is

valued at zero for these clusters.

Table 5.2: Cluster-Harmonic Matrix

PPPPPPPPPPPPPPPPPP
Cluster No.

Harmonic No.
(3) (5) (7) (9) (11) (13) (15)

Cluster 1 18.9 133.5 66.4 26.1 48.7 15.5 10.5

Cluster 2 19.7 119.4 55.6 23.1 44.8 12.4 8.3

Cluster 3 19.6 104.4 54.1 21.3 41.6 8.2 8.1

Cluster 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 5.2: Cluster-Harmonic Matrix

PPPPPPPPPPPPPPPPPP
Cluster No.

Harmonic No.
(3) (5) (7) (9) (11) (13) (15)

Cluster 5 19.7 106.4 51.0 21.7 43.4 11.3 7.8

Cluster 6 20.2 133.4 58.1 26.0 51.8 17.5 9.3

Cluster 7 18.4 133.8 62.9 24.8 45.8 11.7 9.8

Cluster 8 20.4 130.0 59.2 25.4 49.2 16.0 10.2

Cluster 9 20.3 140.4 59.5 27.4 55.6 19.0 9.6

Cluster 10 19.1 110.1 60.4 21.6 42.7 9.6 9.7

Cluster 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cluster 12 19.0 110.6 62.5 22.0 42.9 8.1 10.7

Cluster 13 22.4 131.3 59.5 27.5 51.9 16.1 9.5

Cluster 14 19.7 118.2 55.0 23.6 45.3 12.7 8.5

Cluster 15 20.7 118.3 52.5 24.4 48.3 14.3 8.1

Cluster 16 18.3 128.9 61.7 24.3 46.5 14.4 9.6

Cluster 17 21.2 125.2 62.1 24.5 44.7 11.8 10.6

Cluster 18 19.8 110.5 45.9 22.2 46.0 14.2 7.1

Cluster 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cluster 20 19.5 135.9 57.3 25.3 48.1 16.6 9.7

Cluster 21 18.2 108.8 49.2 22.8 45.8 9.1 8.4

Cluster 22 19.1 125.5 59.5 24.1 47.9 14.5 9.5

Cluster 23 20.7 131.8 54.6 26.4 54.5 15.9 9.3

Cluster 24 21.4 137.5 58.4 27.7 56.3 19.7 9.6
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Table 5.2: Cluster-Harmonic Matrix

PPPPPPPPPPPPPPPPPP
Cluster No.

Harmonic No.
(3) (5) (7) (9) (11) (13) (15)

Cluster 25 19.7 112.8 49.8 23.1 45.2 13.8 7.4

Cluster 26 19.3 117.9 52.1 23.4 47.0 15.6 7.6

Cluster 27 22.1 123.1 55.6 26.4 48.1 13.1 9.0

Cluster 28 21.0 141.9 57.2 27.8 60.2 22.7 10.5

Cluster 29 20.6 103.9 44.3 22.3 41.1 12.1 6.3

Cluster 30 21.6 124.4 54.8 25.6 49.9 16.1 8.6

Cluster 31 20.9 120.7 52.1 24.5 48.4 16.0 8.0

Cluster 32 21.7 127.7 54.8 26.4 51.6 17.1 8.7

Cluster 33 20.9 134.8 59.7 27.6 57.9 19.9 9.8

Cluster 34 18.9 127.3 64.9 23.6 43.3 10.3 11.4

Cluster 35 22.4 121.6 54.7 26.1 49.0 13.8 8.3

From Table 5.2, the clusters with relatively lower values can be classified as

electrical loads and those with unusually higher values are classified as electronics

loads.



Chapter 6

SUMMARY, CONCLUSIONS

AND FURTHER WORK

A method for event detection has been proposed in this work. The work has used

multiple load signatures based on both time and frequency domain analysis for de-

tection of the loads. The harmonic content and the electrical characteristics of the

waveform provide a unique way to achieve the objective of load monitoring.

This research focused on four major aspects of load monitoring. First, the com-

parison of Fast and Slow Transients. Multiple cycle difference values are compared

for the purpose of calculating the detection function to detect events. The 30 cy-

cle differential waveform is observed to have the perfect combinations of smoothed

curve with spikes at the time of events. The reason for this can be attributed to the

fact that, the 3 cycle difference captures only fast transients, whereas the 30 cycle

difference waveform is capable of capturing both fast and slow transients.

Second, for the purpose of event analysis, the research used peak detection tech-

niques. In order to determine the peaks, a Modified Multiscale Peak detection

(MMPD) Algorithm has been proposed, which performs equally well to detect peaks

and at the same time the MMPD algorithm performs approximately two orders of

magnitude faster than the existing AMPD algorithm. This is due to operation on

83
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smaller matrices as a result of windowed operation and the use of ‘1s’ instead of

random numbers.

Third, a feature selection method has been discussed. On testing multiple sets

of features, with various supervised classification models, a final set of features are

selected for analysing the events. Finally, the K-Nearest Neighbors model appears

to have performed the best with a 99.8 % average performance.

Fourth, the features obtained using the methods, are used to cluster the events

detected into groups. The Clustering of Events using a Self Organizing Map and a

Neural Network Training Model are performed and the performance of the methods

are compared. The Analysis of a similarity metric of both the Self Organizing Map

and Neural Network Training Model reveals that SOM performs well for clustering

the events with higher fidelity.

Further work can investigate improved ways to optimize the set of parameters for

classification of events, and to find a novel measure of similarity/dissimilarity be-

tween events. Experimenting the techniques used in this study for analyzing larger

systems with more data will be a step forward in this prospect. Future work oppor-

tunities include, optimizing the set of parameters for classification of events, which

creates the largest distinction among the different load classes. Another task for

future researchers involves comparing the different approaches to capture electrical

events, such as the effectiveness of modelling events using Dynamic State Estimation

approach against using Machine Learning approach.

Finally it would be useful to have a better method to identify the accurate du-

ration of events, instead of relying on peaks using detection techniques to obtain the

event duration.
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