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ABSTRACT

A cost model proposed by Box and Jenkins (1963) and later generalized by Box
and Kramer (1992) for obtaining minimum cost for feedback control of
processes is considered. Unfortunately, it is sometimes difficult to assign values
to the costs of making an adjustment, of taking a sample and of being off target
as is required by their approach. An alternative that avoids the direct assignment
of values to these costs is discussed in this paper, and charts are provided to aid
in choosing a reasonable scheme. For different values of the action limit and the
non-stationarity measure, it is possible to compute an envelope of optimal
schemes from which a choice may be made by judging the disadvantage of an
increased mean square deviation against the advantage of having to take samples
less frequently and/or increasing the average adjustment interval,
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Charts for Optimal Feedback Control with
Recursive Sampling and Adjustment

George E.P. Box and Alberto Lucefio

A cost model proposed by Box and Jenkins (1963) and later generalized by
Box and Kramer (1992) for obtaining minimum cost for feedback control of
processes is considered. Unfortunately, it is sometimes difficult to assign values to
the costs of making an adjustment, of taking a sample and of being off target as is
required by their approach. An alternative that avoids the direct assignment of
values to these costs is discussed in this paper, and charts are provided to aid in
choosing a reasonable scheme. For different values of the action limit and the
non-stationarity measure, it is possible to compute an envelope of optimal
schemes from which a choice may be made by judging the disadvantage of an
increased mean square deviation against the advantage of having to take samples
less frequently andlor increasing the average adjustment interval.

L. INTRODUCTION

Box and Jenkins (1963) considered a model for
feedback control which assumed that the cost of
being off-target was a guadratic function of the
deviation of the observation z, from the target value
T, and that when an adjustment was finally made, this
would result in an additional fixed cost. It has
recently been argued (Box and Kramer 1992} both on
theoretical grounds and on the basis of actual
experience that the IMA(0,1,1) time series model
defined by z, —z, ; = @, ~ 0a,_, is frequently valuable
to approximate the process disturbance (see also Box
and Jenkins 1970). These authors showed, on the
assumptions mentioned, that the minimum cost
scheme would be of the form where the EWMA of
past observations

E' = 1(2,_1 -+ 92,_2 -+ 622‘_3+.. -), Wi'.h 0 < l < 1,

would be plotted between two parallel lines, and an
action T —2z,,; would be taken as soon as Z,,, crosses
the lines |24, —7|= L. For any proposed scheme the
average interval between adjustments that we call
AAT may be computed.

A different approach was adopted by other
writers including Taguchi (1981) and Srivastava and
Wu (1991) who plotted the actual value z,instead of
the EWMA Zz,,. On the assumptions mentioned
above (except in the case where the non-stationarity
measure A=1-8 is equal to one, when the two forms

are identical) their schemes are not optimal. Luceiio
(1992) showed that the main reason for this is
because the optimum adjustment is in fact T-Z,,,
rather than T—z, and that the cost of regulation
applying the policy based on z, can be considerably
larger than that based on Z,,,.

Recently Box and Kramer (1992) generalized the
model by considering also the cost of monitoring the
process, i.e. the cost of taking each observation. In
particular, supposing initially that the process was
sampled at unit intervals, they considered the
possibility of sampling at intervals m units apart,
where m is an integer.

These authors arrive at the following overall cost
function:

C C

+C,-{9—9- +mA%g[Lf(A.0,)]- -(-"-'-_21)—12}

where h(B) and g(B) are functions that have been
approximated by Bex and Jenkins (1963), Lucas and
Croisier (1982), Crowder (1987), Kramer (1989) and
Srivastava and Wu (1991), Cr is the cost of being off
target for onc time interval by an amount of
of:Var(a,), C4 and Cy, are the fixed costs incurred
each time the process is adjusted or observed,
respectively, and 4,~=1-8, and G, are given by

ALo2 =ma’o? and 0,07 = 807.
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While A and o, may be estimated using past plot
data (see Box and Jenkins 1970}, a difficulty about
this procedure has been that one has to know values
for the cost C4 of making an adjustment, Cy,-of taking
a sample, and the consiant C'r that determines how
rapidly the quadratic loss fanction increases.

In the simpler case where the monitoring interval
was regarded as fixed, it was pointed out recently by
Box (1992) how the need to estimate individual cost
could be avoided. A base case was considered where
L=0 and samples and adjustments where made at unit
intervals, This is appropriate for the situation where
there are no costs other than that of being off target.
A table was presented which, for given nonzero
values of L, shows the increasing AAI together with
the corresponding incrcasing mean square error
compared with the base scheme. An empirical
judgement could then be made of a reasonable
compromise,

The main purpose of this paper is to reuse the
resulis of Box and Kramer (1992) 10 get charts of
optimal schemes from which one could also choose m
in a similar empirical way. That is, on the basis of
how much the mean square error would need to
increase to achieve the advantage of taking samples
and making adjustments Iess frequently. The charts
required to present the optimal schemes are described
in Section 2 and some examples are given in Section
3.

2. DESCRIPTION OF CHARTS

Charts 1-6 of Figure 1 give the values of the average
adjustment interval (AATI) in terms of the original
units of time and the percent increase in standard
deviation (ISD) with respect to o, corresponding to
values of the non-stationarity measure A=0.1 (0.1)
0.6, the standardized action limit L/g,=0.0 (0.25) 2.5,
and the monitoring interval m=1, ..., 140, The charts
are limited 1o cover only small to moderate values of
the percent increase in standard deviation so that the
greater values of m only appear combined with the
smaller values of A. Thus m=1 (1) 6, 10 (5) 50, 60
(10) 140 for A=0.1; m=1 (1) 5, 6 (2) 42 for 2=0.2;
m=1 (1) 21 for A=0.3; m=1 (1) 13 for 2=0.4; m=1 (1)
9 for 2=0.5; and m=1 (1) 7 for 4=0.6.

3. EXAMPLE OF THE USE OF THE
CHARTS

Following Box and Kramer (1992), suppose we need
to control a quality characteristic subject to a
disturbance which was identified and estimated as an
IMA(0,1,1) with A=0.3 and ¢,=3.0. Suppose that the
target value is 340 and the specification limits are 325
and 355, i.e. 340£15.
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Figure 1. Average adjustment interval and percent increase in standard deviation with respect to 6, for A=0.1 (0.1)
0.6, Lic,=0.0 (0.25) 2.5 and several values of m from I to 140. The AAI is in terms of the original time units and not
in terms of the time units of the sampled process.
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If the action limit is L=3.0 and the monitoring
interval is m=10, the average adjustment interval and
the percent increase in standard deviation are equal to
29.5 and 36.5% respectively. This is represented by
point A in Figure 2.

Then we might increase the AAI, for example, to
40.3 with nearly the same ISD, 37.8, by taking L=1.4
x 3=4.2 and observing the process more frequently,
m=7 (point B in Figure 2).

We also could reduce the ISD to 24.8, keeping
almost the same AAl, 29.4, by taking L=1.3 x3=39
and m=3 (point C in Figure 2). Or, by using L=0.55 x
3=1.65, we could increase the monitoring interval to
m=20 with a similar AAI provided that we are ready
to assume an ISD of 49.1 (point D in Figure 2).

In addition, if the value of A is only known to be
in the interval 0.30+0.10, and L=3.0 and m=10, the
AAI and ISD will be in the intervals (22.1, 49.3) and
(27.8, 46.1) respectively.

In this way, a number of alternative schemes can
be brought out in an envelope and we can then ask
the people involved in the process to make a choice.
The charts provide a way of seeing what the increase
in mean square error and the average adjustment
interval are as a function of how frequently we need a
sample and where the action limits are.

4. THE COST FUNCTION UNDER
ALTERNATIVE MODELS

For the charts to be useful in practice, one needs to
know how sensitive are the results to the assumptions
made. In this section we give this question some
consideration. Whether the IMA(0,1,1) time series
model or a different model is used, the overali cost
function can be computed if the AAI and ISD, or
equivalently the Mean Square Deviation (MSD), can
be calcniated. The cost is then given by

C C C
C=—n;u'+m‘zl'—)+ ;Tz-(MSD),

where

Msp=—— B $(ern-1)
= Z ik — B
m(AAI) | i i ik

Moreover, the AAI and the numerator of the
MSD can be evaluated using an approach similar to
that used by Crowder (1987) in the context of
Statistical Process Control. This evalpation can be
done provided that the action criteria be [£,-T|> L,
the computed one step ahead forecast be updated with
Z =2, +Aa,_;,and the pdf of a, ; be known.

20 20

60 80 AAL

Figure 2. Average adjustment interval and percent increase in standard deviation with respect to o, for
A=0.3,L{c,=0.0(0.25) 2.5 and several values of m from 1 to 20. Points A-D correspond to the example of
Section 3. The AAI and ISD for these points are (29.5,36.5),(40.3,37.8),(29.4,24.8), and (29.1,49.1) respectively.
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Let A(u, L) be the average remaining adjustment
interval after t-2, given that the computed one step
ahead forecast is T+u and the action limit is L. Then,
at time -1, we will conclude that the process is out of
control and call for a control action if |z, ~T|> L. In
this case, the remaining adjustment interval after -2
will be equal to 1. If |7, ~T|<L, the process will
continue in control for at least one more unit of time,
the computed one step ahead forecast will change
from Z,_, t0 Z, =2, +Aa,;, where g, is the next
computed shock, and the remaining adjustment
interval after ¢-2 will be 1+ A(Z,, L). Therefore,

A(u,L)=1+ [A(u+Aa,L)f(a)da
e+ Aaf<L

@1
L1k x—u
=1+ I_J;'A(.X.,L)f(T)dx,

where f(.) is the pdf of the computed shock g, .
Analogously, the numerator of the MSD satisfies
the integral equation

1
)

MuL)=u+c%+ If M{x,L) f[""“ )dx. @.2)
-L

A

Equations (4.1) and (4.2) are Fredholm integral
equations and can be solved numerically. A detailed
discussion of methods used to obtain numerical
solutions to integral equations is given by Baker
(1977). When the IMA(0,1,1) model is true, f.) is the
normal density function with mean zero and variance
o2. Otherwise f(.) is the density function of the next
computed shock which depends on the true
disturbance model,

A simple example of the use of (4.1) and (4.2)
can be shown assuming that f(.) is the uniform

distribution in the range [-(303)”2,(303)”’} Tn this
case, the solution of the integral equations is

particularly simple if L{{10,)<3"*/2, and the AAI
and MSD are then given respectively by

| -(E 5]

3
- 22| L} _1
MSD—O’Z’%—A 0'3[10_ ] m.

Some values of the AAI and ISD under the
IMA(Q,1,1), which have been computed solving (4.1)
and (4.2) numerically for A=1 and ¢,=1, and the
uniform models are given in Table 1,
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Tabk 1

Average adjustment interval and percent increse in
standard deviaiton with respect to o, for A=1 and
o,=1 , under the IMA (0, 1, 1) and uniform models.

Li(Ac)| IMAMODEL | UNIFORM MODEL

AA! ISD AAT ISD

0.00 | 1.0000 | 0.0000 | 1.0000 | 0.0000
025 1.2454 | 02039 | 1.1687 | 0.1502
050 | 1.6070 | 15167 | 1.4058 | 1.1957
0.75 | 2.1150 | 45233 | 1.7637 | 3.9803

Barnard (1959) proposed a model for process
control in which there is a Poisson process of “jumps”
occurring at a rate & jumps per unit time, such that at
each jump the process mean is shifted by an amount b
which is normally distributed with mean zero and
variance o7. In addition, there is a white noise
process that is added to the mean and has variance

In Barnard's model, the disturbance is assumed to
be generated by the process z=pgta, where @, has a
N(0,02) distribution, i, =, , + &, and &, is the sum
of k independent N(0, 07) random variables, k being
an independent Poisson random variable with mean &

for each time «. Clearly the variance of & is ol = éo7

If a process generated using the Bamard model is
controlled with the action criteria |2, —T|2 L where
the computed one step ahead forecast is updated with
the formula z, =Z,_,+Aq.,, with A=1-6, the
variance of the next computed shock is given by

202  dop
Vi —p)=—a b
ar(z,~ ) 146 1-6° @.3)

It can be easily shown that if 8o2/a2=A%/8,
the autocorrelation structures of the IMA(D,1,1) with
smoothing constant & and the Barnard processes are
the same. The variance of the noise in this IMA
model is 0°=02/0 which coincides with the
variance of the next computed shock given by (4.3)
when 862/ 02 = 42/6.

The distribution of next computed shock for the
Barnard's model is a mixture of infinite normal
distributions with mean zero and increasing
variances. For this distribution, the equations (4.1)
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and (4.2) become very cumbersome to solve.

An easier model can be found assuming that the
distribution of the next computed shock is a mixture
of the N(0,562) and the N (0,502 +07) with
probabilities 1-¢r and ¢ respectively. The variance of
the next computed shock is then so? + aof. For §
small, if o=8/(1-6%) and s=2/1+8), the variance of
the next compated shock is the same for the Bamnard
and for the normal-mixture models.

7

Tabie 2 gives the AAI and MSD obtained by
simulation with the Bamard's model, and the AAT and
MSD obtained solving equations (4.1) and (4.2)
numerically using the normal-mixture and the
IMA(0,1,1) models with corresponding values of A,
0, o, and s for o> =1 and several values of L/(A0), &
and of. The results for the Barnard's and normal-
mixture models are quite close to those found using
the IMA(0,1,1) time series model.

Table 2

Average adjustment interval and mean square deviation under the Barnard, rormal-mixture, and IMA(0,1,1)
models with the same variance of the next computed shock, for 6> =1 and several values of Li(Ac), &, and o} .
The corresponding values of A, O, o, and s satisfy 502/0‘3 =A0.02fe=c>.a= 8/(1 - 92),and §=2/(1+6). By
definition g{.)=(MSD/C®-1)/22 50 that 1+g(.) is equal to the MSD when A=1 and o=1.

L{(Ao) 51 o BARNARD NORMAL-MIXTURE IMA
(oﬁ = 1) Simulation Numerical Numerical
AAI 1+g(.) AAI 1+g() AAI 1+g(.)

4.00 64.00 400 29.417 3.039 21.416 4.226 21.023 4.266
1.00 24.111 3.221 21.099 4241
025 21.806 3871 21.033 4244
16.00 400 28.143 3.384 21.654 4222
1.00 23.864 3.833 21.114 4.239
025 21964 3.967 21.042 4,243
4.00 4.00 24.354 3.956 21.67T1 4221
1.00 22,440 4,101 21.148 4,236
0.25 21957 4.022 21.035 4243

2.00 64.00 4.00 7792 1.481 7.116 1.861 6.899 1.863
1.00 7.172 1.262 6.915 1.866
0.25 6918 2.093 6.877 1.868
16.00 4.00 8.462 1451 7.279 1.852
1.00 7.224 1.790 6.943 1.864
025 7.004 1.814 6.880 1.868
4.00 4.00 8.442 1.634 7320 1.843
1.00 7419 1.710 6.955 1.862
0.25 7.011 1.916 6.879 1.868

1.00 64.00 400 2901 1.022 2.893 1.195 2.782 1.191
1.00 2.824 1.049 2.804 1.193
025 2793 1.365 2,782 1,193
16.00 4.00 3.043 1.122 2994 1.196
1.00 2.835 1.111 2824 1,193
0.25 2.791 1.290 27785 1.163
4.00 4.00 3.220 1.135 3.088 1.195
1.00 2.882 1.134 2.839 1.193
0.25 2797 1.102 2.784 1.193

0.50 64.00 4.00 1.637 1.059 1.645 1.032 1.607 1.031
1.00 1.615 1.037 1.616 1.031
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0.25 1.613 0.956 1.608 1.031
16.00 4,00 1.663 1.046 1.682 1.033
1.00 1.620 1.087 1.624 1.031
0.25 1.606 1.063 1.609 1.031
4.00 4,00 1.741 1.010 1.732 1.034
1.00 1.636 1.012 1.632 1.032
0.25 1.603 1.126 1.609 1.031
Kramer, T. (1989). "Process Control from an
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