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2 C. KANZOW AND H. PIEPER1 IntroductionLet F : IRn ! IRn be continuously di�erentiable. The nonlinear complementarity problem isto �nd a solution of the following system of equations and inequalities:xi � 0; Fi(x) � 0; xiFi(x) = 0 8i 2 I := f1; : : : ; ng:We denote this problem by NCP(F ). It has a large number of important applications, andwe refer the interested reader to the survey papers by Harker and Pang [22] and Ferris andPang [17].The basic idea of most algorithms for the solution of NCP(F ) is to reformulate thisproblem as a nonlinear system of equations, as an optimization problem or as a parametricproblem. Here we concentrate ourselves on the equation-based approach where problemNCP(F ) is written equivalently as �(x) = 0 (1)for a suitable equation-operator � : IRn ! IRn. For certain reasons, the operator � is usuallynonsmooth, so that we cannot apply the classical Newton method in order to solve problem(1). Nevertheless, recent research shows that one can still design globally and locally fastconvergent methods for the solution of (1). In the following, we give a short summary of thebasic ideas of some of these methods which are related to this paper.Nonsmooth Newton Methods: Instead of solving problem (1) by the classical Newtonmethod, one can apply a nonsmooth Newton method based, e.g., on Clarke's [12] generalizedJacobian @�(x) of � at the point x 2 IRn. For example, the nonsmooth Newton methods byKummer [30] and Qi and Sun [37] solve at each iteration the generalized Newton equationVkd = ��(xk); (2)where Vk 2 @�(xk). This method is locally superlinearly/quadratically convergent undercertain assumptions, but (in contrast to the classical Newton method for smooth systemsof equations) cannot be globalized in a simple way for general operators �. However, byusing special functions �, several authors have recently presented globally and locally fastconvergent nonsmooth Newton-type methods, see, e.g., [25, 16, 13, 28, 5].One of the main advantages of most of these methods is the fact that they are usuallywell-de�ned for an arbitrary complementarity problem NCP(F ).Smoothing Methods: Another way to deal with the nonsmoothness of � is to approximatethis function by a smooth operator �� : IRn ! IRn, where � > 0 denotes the smoothingparameter. The basic idea of the class of smoothing methods is then to solve a sequence ofproblems ��(x) = 0 (3)and to force � to go to 0. The advantage of this approach is that one can apply thestandard Newton method for solving problem (3) so that one has to solve at each iterationthe smoothing Newton equation �0�(xk)d = ���(xk): (4)



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 3Smoothing methods of this kind were considered, e.g., by Chen and Harker [6], Chen andMangasarian [9], Kanzow [26], Gabriel and Mor�e [20], Burke and Xu [3, 43], Xu [41, 42],Hotta and Yoshise [23], Chen and Ye [11], Chen and Chen [4], Jiang [24] and Tseng [40]. Inparticular, the paper [3] by Burke and Xu initiated much of the recent research in this area.The disadvantage of smoothing methods is that they usually require F to be at least aP0-function in order to guarantee that the linear systems (4) are solvable. It seems di�cultto make smoothing methods work on general complementarity problems where the Jacobianin (4) might be singular. This problem is also reected by the fact that smoothing methodstry to follow the so-called smoothing path which may not exist for non-P0- or non-monotoneproblems.Nevertheless, a sophisticated implementation like in the SMOOTH code by Chen andMangasarian [9] seems to work quite well also for non-monotone problems, see [2].Jacobian Smoothing Methods: The third class of algorithms for the solution of (1) is dueto Chen, Qi and Sun [10]. They call it a smoothing Newton method, but we prefer the nameJacobian smoothing method in order to distinguish it better from the class of smoothingmethods. These methods try to solve at each iteration the mixed Newton equation�0�(xk)d = ��(xk): (5)This linear system is a mixture between the nonsmooth Newton equation (2) and the smooth-ing Newton equation (4); it uses the unperturbed right-hand side from (2), but the smoothmatrix from (4).The algorithm and convergence theory developed by Chen et al. [10] still relies on thefact that the linear systems (5) are solvable at each iteration, and, similarly to the class ofsmoothing methods, this assumption is intimately related to F being a P0-function. Hencealso this Jacobian smoothing method is not well-de�ned for general complementarity prob-lems.Note that the Jacobian smoothing idea is also used in a couple of recent smoothing papersas a kind of hybrid step, see, e.g., [11, 4]. The main reason for doing this is that the Jacobiansmoothing method helps (or simpli�es) to prove local fast convergence.Despite the fact that Jacobian smoothing methods are often viewed as a variation ofsmoothing methods, we take a di�erent point of view: We view a Jacobian smoothing methodas a suitable perturbation of a nonsmooth Newton method. In fact, the Jacobian smoothingmethod seems to be much closer to nonsmooth Newton methods than to smoothing methodssince they do not try to follow any smoothing path. Instead, they also try to solve theunperturbed problem (1) directly by replacing the matrix Vk 2 @�(xk) in (2) by a suitableapproximation �0�(xk).Having this in mind, it seems reasonable to ask if one can modify the Jacobian smoothingmethod by Chen et al. [10] in such a way that it becomes well-de�ned for general comple-mentarity problems. This is actually the main motivation for this paper, and the answer ispositive.In order to do this, however, we cannot consider the general class of smoothing methodsused by Chen et al. [10]. Instead, we concentrate on one particular reformulation of thecomplementarity problem NCP(F ) and fully exploit the (additional) properties of this special



4 C. KANZOW AND H. PIEPERreformulation. It is based on the Fischer-Burmeister function ' : IR2 ! IR de�ned by'(a; b) := pa2 + b2 � a� b;see [18]. Then it is well-known and easy to see that problem NCP(F ) is equivalent to problem(1) with � being de�ned by �(x) := 0B@ '(x1; F1(x))...'(xn; Fn(x)) 1CA :The globalization strategy for our algorithm is heavily based on the natural merit function	 : IRn ! IR given by 	(x) := 12�(x)T�(x):The corresponding smooth operator �� : IRn ! IRn is de�ned similarly by��(x) := 0B@ '�(x1; F1(x))...'�(xn; Fn(x)) 1CA ;where '� : IR2 ! IR denotes Kanzow's [26] smooth approximation'�(a; b) :=pa2 + b2 + 2�� a� b; � > 0;of the Fischer-Burmeister function.The organization of this paper is as follows: The mathematical background and somepreliminary results are summarized in Section 2. The Jacobian smoothing idea is discussedin more detail in Section 3. The algorithm together with some of its elementary propertiesis presented in Section 4. The global and local convergence analysis is part of Sections 5 and6, respectively. Extensive and very encouraging numerical results are reported in Section 7,and Section 8 concludes this paper with some �nal remarks.Some words about our notation. Let G : IRn ! IRm be continuously di�erentiable. ThenG0(x) 2 IRm�n denotes the Jacobian of G at a point x 2 IRn, whereas the symbol rG(x) isused for the transposed Jacobian. In particular, if m = 1, the gradient rG(x) is viewed asa column vector. If G : IRn ! IRm is only locally Lipschitzian, we can de�ne Clarke's [12]generalized Jacobian as follows:@G(x) := conv �H 2 IRm�nj 9fxkg � DG : xk ! x and G0(xk)! H	 ;here, DG denotes the set of di�erentiable points of G and convA is the convex hull of a setA: If m = 1, we call @G(x) the generalized gradient of G at x for obvious reasons.Usually, @G(x) is di�cult to compute, especially for m > 1. Instead, Proposition 2.6.2(e) in Clarke [12] provides the overestimation@G(x)T � @G1(x)� : : :� @Gm(x);



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 5where the right-hand side denotes the set of matrices in IRn�m whose ith column is givenby the generalized gradient of the ith component function Gi. Since this right-hand side isoften easier to compute and motivated by the recent paper [34] by Qi, we write@CG(x)T := @G1(x)� : : :� @Gm(x)and call @CG(x) the C-subdi�erential of G at x. For the purpose of this paper, the C-subdi�erential is considerably more important than the more familiar generalized Jacobian.If x 2 IRn, we denote by kxk the Euclidian norm of x. Similarly, kAk denotes the spectralnorm of a matrix A 2 IRn�n which is the induced matrix norm of the Euclidian vector norm.Occasionally, we will also write k � k2 in order to avoid any possible confusions. Sometimeswe also need the Frobenius norm kAkF of a matrix A 2 IRn�n.If A 2 IRn�n is any given matrix and A � IRn�n is a nonempty set of matrices, we denoteby dist(A;A) := infB2A kA � Bk the distance between A and A. This is sometimes alsowritten as dist2(A;A) in order to emphasize that the distance is measured using the spectralnorm. Similarly, we write distF (A;A) if the distance is calculated by using the Frobeniusnorm. The (Euclidian) distance between a vector and a set of vectors of the same dimensionis de�ned in an analogous way.Finally, we make use of the Landau symbols o(�) and O(�): Let f�kg and f�kg be twosequences of positive numbers such that �k ! 0. Then we write �k = o(�k) if �k=�k ! 0,and �k = O(�k) if lim supk!1 �k=�k < 1, i.e., if there exists a constant c > 0 such that�k � c�k for all k 2 IN := f0; 1; 2; : : :g.2 PreliminariesIn this section, we summarize some of the known properties of the functions �;�� and 	which will be important for our subsequent analysis. In addition, we prove some preliminaryresults which will also be used later.The �rst result follows directly from the de�nition of the C-subdi�erential and Proposition3.1 in [16].Proposition 2.1. For an arbitrary x 2 IRn; we have@C�(x)T = Da(x) +rF (x)Db(x) (6)where Da(x) = diag(a1(x); : : : ; an(x)), Db(x) = diag(b1(x); : : : ; bn(x)) 2 IRn�n are diagonalmatrices whose ith diagonal element is given byai(x) = xipx2i + Fi(x)2 � 1; bi(x) = Fi(x)px2i + Fi(x)2 � 1if (xi; Fi(x)) 6= (0; 0), and by ai(x) = �i � 1; bi(x) = �i � 1for every (�i; �i) 2 IR2 such that k(�i; �i)k � 1 if (xi; Fi(x)) = (0; 0):



6 C. KANZOW AND H. PIEPERThe next result follows from [16, 19] together with known results for (strongly) semismoothfunctions [37] and the recent theory of C-di�erentiable functions by Qi [34].Proposition 2.2. Assume that fxkg � IRn is any convergent sequence with limit pointx� 2 IRn. Then the following statements hold:(a) The function � is semismooth so thatk�(xk)� �(x�)�Hk(xk � x�)k = o(kxk � x�k)for any Hk 2 @C�(xk).(b) If F is continuously di�erentiable with a locally Lipschitzian Jacobian, then � isstrongly semismooth so thatk�(xk)� �(x�)�Hk(xk � x�)k = O(kxk � x�k2)for any Hk 2 @C�(xk).The following result can be veri�ed similarly to Lemma 3.7 in [27].Proposition 2.3. The function '� satis�es the inequalityj'�1(a; b)� '�2(a; b)j � p2jp�1 �p�2jfor all (a; b) 2 IR2 and all �1; �2 � 0. In particular, we havej'�(a; b)� '(a; b)j � p2p�for all (a; b) 2 IR2 and all � > 0.As an immediate consequence of Proposition 2.3, we obtainCorollary 2.4. The function �� satis�es the inequalityk��1(x)� ��2(x)k � � jp�1 �p�2 j (7)for all x 2 IRn and �1; �2 � 0, where � := p2n. In particular, we havek��(x)� �(x)k � �p�for all x 2 IRn and all � � 0:We next state a result which is a minor extension of Proposition 3.4 of [16]. We omit itsproof here since it can be carried out in a similar way as the one in [16].Proposition 2.5. The merit function 	 is continuously di�erentiable with r	(x) = V T�(x)for an arbitrary V 2 @C�(x).The following technical result will be used in the proof of our main global convergence result,Theorem 5.8 below.



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 7Lemma 2.6. Let fxkg � IRn and f�kg � IR be two sequences with fxkg ! x� for somex� 2 IRn and f�kg # 0. Then limk!1r	�k(xk) = r	(x�)and limk!1�0�k(xk)T�(xk) = r	(x�):Proof. Since 	� is di�erentiable for all � > 0, we haver	�k(xk) = �0�k(xk)T��k(xk) =Xi2I '�k(xki ; Fi(xk))r��k;i(xk);where ��k ;i denotes the ith component function of ��k . On the other hand, for arbitraryV 2 @C�(x�), we obtain from Proposition 2.5:r	(x�) = V T�(x�) =Xi2I '(x�i ; Fi(x�))V Ti ;where V Ti denotes the ith column of the matrix V T . Now let�(x�) := fi j x�i = Fi(x�) = 0g:We consider two cases:Case 1: i =2 �(x�).Then the Fischer-Burmeister function is continuously di�erentiable at (x�i ; Fi(x�)), and theith column of V T is single valued and equal to r�i(x�) (cf. Proposition 2.1). In particular,all limits exist, and from the continuity of ' and rF , we obtain:limk!1'�k(xki ; Fi(xk))r��k ;i(xk) = '(x�i ; Fi(x�))r�i(x�) = '(x�i ; Fi(x�))V Ti :Case 2: i 2 �(x�).Since @'�@a (a; b) 2 (�2; 0) and @'�@a (a; b) 2 (�2; 0)for all (a; b) 2 IR2 and � > 0, the sequence fr��k ;i(xk)g is bounded for k!1. Sincelimk!1'�k(xki ; Fi(xk)) = '(x�i ; Fi(x�)) = 0;we therefore have limk!1'�k(xki ; Fi(xk))r��k;i(xk) = 0:Since we also have '(x�i ; Fi(x�))V Ti = 0 for all i 2 �(x�), the �rst statement follows fromCases 1 and 2.The second statement is easier to establish than the �rst one since we multiply by �(xk)and not by ��k(xk). The proof would be similar to the one just given.We conclude this section by stating another technical result which will also be utilized inour global convergence analysis.



8 C. KANZOW AND H. PIEPERLemma 2.7. Let fxkg; fdkg � IRn and ftkg � IR be sequences with xk+1 := xk + tkdk suchthat fxkg ! x�, fdkg ! d� and ftkg # 0 for certain vectors x�; d� 2 IRn. Furthermore letf�kg � IR be a sequence with f�kg # 0. Thenlimk!1 	�k(xk + tkdk)�	�k(xk)tk = r	(x�)Td�:Proof. From Proposition 2.5 and the Mean Value Theorem, we obtain that, for each k 2 IN,there exists a vector �k 2 IRn on the line segment between xk and xk+1 (that is �k = xk+�kdkfor some �k 2 [0; tk]) such that	�k(xk + tkdk)� 	�k(xk) = tkr	�k(�k)Tdk:Dividing by tk gives 	�k(xk + tkdk)� 	�k(xk)tk = r	�k(�k)Tdk:Since �k lies between xk and xk+1, it follows that f�kg ! x�. Therefore, we can apply the�rst statement of Lemma 2.6, so that passing to the limit, we getlimk!1 	�k(xk + tkdk)� 	�k(xk)tk = limk!1r	�k(�k)Tdk = r	(x�)Td�:This completes the proof.3 Jacobian SmoothingThe basic idea of our algorithm to be presented in Section 4 is to replace the generalizedNewton equation Vkd = ��(xk); Vk 2 @C�(xk);by the linear system �0�k(xk)d = ��(xk);i.e., we replace the element Vk from the C-subdi�erential @C�(xk) by the (existing) Jacobian�0�k(xk) of the smoothed operator ��k . In order to guarantee local fast convergence of thisiteration, we have to control the di�erence between �0�k(xk) and the set @C�(xk). A �rstresult in this direction is established inLemma 3.1. Let x 2 IRn be arbitrary but �xed. Then we havelim�#0 dist(�0�(x); @C�(x)) = 0: (8)



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 9Proof. From the de�nition of ��, we have for all � > 0,�0�(x) = diag xipx2i + Fi(x)2 + 2� � 1!+ diag Fi(x)px2i + Fi(x)2 + 2� � 1! F 0(x):We consider the distance of the columns of the transposed Jacobians.To this end, let us de�ne �(x) := fi j xi = Fi(x) = 0g:If we denote the ith component function of �� by ��;i, we obtainlim�#0 r��;i(x) = 8<:� xipx2i+Fi(x)2 � 1� ei + � Fi(x)px2i+Fi(x)2 � 1�rFi(x) for i =2 �(x);�ei �rFi(x) for i 2 �(x):Hence the assertion follows from Proposition 2.1 (with (�i; �i) = (0; 0) for i 2 �(x)).It is an immediate consequence of Lemma 3.1 that we can �nd, for every �xed � > 0, aparameter �� = ��(x; �) > 0 such thatdist(�0�(x); @C�(x)) � �for all 0 < � � ��: However, it does not follow from Lemma 3.1 how we can choose thisthreshold value ��. On the other hand, it is important for the design of our algorithm to havean explicit expression of a possible value of ��. This is made more precise in Proposition 3.4below whose proof is based on the following two observations.Lemma 3.2. Let x 2 IRn and � > 0 be arbitrary but �xed. Then[distF (r��(x); @C�(x)T )]2 = nXi=1 [dist2 (r��;i(x); @�i(x))]2 :Proof. Let Vi be the ith column of a matrix V . Then, using the de�nition of the C-subdi�erential, it is easy to see thatinfV 2@C�(x)T nXi=1 kr��;i(x)� Vik22 = nXi=1 infHi2@�i(x) kr��;i(x)�Hik22:Using this and the de�nition of the Frobenius norm, we obtain[distF (r��(x); @C�(x)T )]2 = infV 2@C�(x)T kr��(x)� V k2F= infV 2@C�(x)T nXi=1 kr��;i(x)� Vik22= nXi=1 infHi2@�i(x) kr��;i(x)�Hik22= nXi=1 [dist2 (r��;i(x); @�i(x))]2 :



10 C. KANZOW AND H. PIEPERThis completes the proof.Lemma 3.3. Let � > 0 be arbitrary but �xed. Then the function f : (0;1) ! IR, de�nedby f(�) := 1p� � 1p� + 2�;is strictly decreasing in � > 0.Proof. The function f is continuously di�erentiable withf 0(�) = �12 1(p� )3 + 12 1p� + 2�3 = �12  1(p� )3 � 1p� + 2�3! :Hence we have f 0(�) < 0 for all � > 0. This implies our assertion.We now come to the main result of this section.Proposition 3.4. Let x 2 IRn be arbitrary but �xed. Assume that x is not a solution ofNCP(F ). Let us de�ne the constants(x) := maxi 62�(x) fkxiei + Fi(x)rFi(x)kg � 0and �(x) := mini 62�(x)fx2i + Fi(x)2g > 0;where �(x) := fij xi = Fi(x) = 0g. Let � > 0 be given, and de�ne��(x; �) := 8<: 1 if �n(x)2�2 � �(x)� � 0;�(x)22 � �2n(x)2��2�(x)� otherwise:Then distF (�0�(x); @C�(x)) � �for all � such that 0 < � � ��(x; �).Proof. We �rst note that f1; : : : ; ng n �(x) 6= ; since x is not a solution of NCP(F ) byassumption. Hence �(x) > 0. Furthermore, since kAkF = kATkF for an arbitrary matrixA 2 IRn�n, we obtaindistF ��0�(x); @C�(x)� = distF (r��(x); @C�(x)T )= qPni=1 [dist2 (r��;i(x); @�i(x))]2: (9)from Lemma 3.2. Hence it is su�cient to consider the distance between the ith columns ofr��(x) and @C�(x)T . To this end, we recall that these columns are given byr��;i(x) = @'�@a (xi; Fi(x))ei + @'�@b (xi; Fi(x))rFi(x)



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 11and @�i(x) = � @'@a (xi; Fi(x))ei + @'@b (xi; Fi(x))rFi(x) if i 62 �(x);(�i � 1)ei + (�i � 1)rFi(x) if i 2 �(x);respectively, where (�i; �i) 2 IR2 denotes any vector such that k(�i; �i)k � 1, see Proposition2.1. We distinguish two cases:Case 1: i 2 �(x):Then (xi; Fi(x)) = (0; 0) and thereforer��;i(x) = �ei �rFi(x):Hence, taking (�i; �i) = (0; 0), we see thatr��;i(x) 2 @�i(x)so that dist2 (r��;i(x); @�i(x)) = 0 (10)for all i 2 �(x).Case 2: i 62 �(x):In this case, we have @�i(x) = fr�i(x)g:By a simple calculation, we therefore getdist2 (r��;i(x); @�i(x))= kr��;i(x)�r�i(x)k=  xipx2i + Fi(x)2 + 2� � 1! ei + Fi(x)px2i + Fi(x)2 + 2� � 1!rFi(x)� xipx2i + Fi(x)2 � 1! ei � Fi(x)px2i + Fi(x)2 � 1!rFi(x)= xiei 1px2i + Fi(x)2 + 2� � 1px2i + Fi(x)2!+Fi(x)rFi(x) 1px2i + Fi(x)2 + 2� � 1px2i + Fi(x)2!=  1px2i + Fi(x)2 + 2� � 1px2i + Fi(x)2! (xiei + Fi(x)rFi(x))=  1px2i + Fi(x)2 � 1px2i + Fi(x)2 + 2�! kxiei + Fi(x)rFi(x)k:



12 C. KANZOW AND H. PIEPERIn view of the de�nitions of the constants �(x) and (x), we therefore obtain by using Lemma3.3: dist2(r��;i(x); @�i(x)) �  1p�(x) � 1p�(x) + 2�! (x)=  p�(x) + 2��p�(x)p�(x)p�(x) + 2� ! (x)�  p2�p�(x)p�(x) + 2�! (x);where the latter inequality follows from the elementary fact that pa + b � pa +pb for alla; b � 0. We now want to show that p2�p�(x)p�(x) + 2�! (x) � �pn (11)for all 0 < � � ��(x; �) which then impliesdist2 (r��;i(x); @�i(x)) � �pn: (12)If (x) = 0, then inequality (11) holds trivially (for arbitrary � > 0). Hence we assume that(x) > 0. Then an easy calculation shows that (11) is equivalent to�(x)2 � 2��n(x)2�2 � �(x)� : (13)Hence, if n(x)2�2 � �(x) � 0; inequality (11) is satis�ed for any � > 0, in particular for all� 2 (0; 1]. Otherwise we obtain the following upper bound from (13):� � �(x)22 � �2n(x)2 � �2�(x)� =: ��(x; �):Putting together (9), (10) and (12), we therefore obtaindistF (�0�(x); @C�(x)) �vuut nXi=1 �2n = �for all 0 < � � ��(x; �).The constant ��(x; �) de�ned in Proposition 3.4 will play a central role in the design of ouralgorithm to be described in the following section.We also note that, since kAk � kAkF for an arbitrary matrix A 2 IRn�n, it follows fromProposition 3.4 that dist(�0�(x); @C�(x)) � �for all � with 0 < � � ��(x; �).



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 134 AlgorithmIn this section, we give a detailed description of our Jacobian smoothing method and statesome of its elementary properties. In particular, we show that the algorithm is well-de�nedfor an arbitrary complementarity problem.Basically, we try to take the Jacobian smoothing method from Chen et al. [10]. Inaddition, we incorporate a gradient step in a similar (but slightly di�erent) way as this isdone by some nonsmooth Newton methods [13, 28, 5]. Unfortunately, the introduction ofthese gradient steps makes the updating rules for our smoothing parameter �k as well asthe convergence theory considerably more technical and complicated. However, it is thisgradient step which makes the algorithm applicable to a general nonlinear complementarityproblem.In fact, this is also the reason why we concentrate us on the Fischer-Burmeister function:Its merit function 	 is smooth due to Proposition 2.5, whereas the same does not seem tohold for the general class of smoothing functions considered in [10].We now state our algorithm formally.Algorithm 4.1. (Jacobian Smoothing Method)(S.0) Choose x0 2 IRn, �; �; �; � 2 (0; 1),  > 0, � 2 (0; 12(1 � �)), p > 2 and � � 0. Set�0 := k�(x0)k, � := p2n, �0 := ( �2��0)2 and k := 0.(S.1) If kr	(xk)k � � : STOP.(S.2) Find a solution dk 2 IRn of the linear system�0�k(xk)d = ��(xk): (Newton step) (14)If the system (14) is not solvable or if the condition�(xk)T�0�k(xk)dk � ��kdkkp (15)is not satis�ed, set dk := �r	(xk): (Gradient step) (16)(S.3) Find the smallest mk in f0; 1; 2; : : :g such that	�k(xk + �mkdk) � 	�k(xk)� 2��mk	(xk) (17)if dk is given by (14), and such that	(xk + �mkdk) � 	(xk)� ��mkkdkk2: (18)if dk is given by (16). Set tk := �mk and xk+1 := xk + tkdk.



14 C. KANZOW AND H. PIEPER(S.4) If k�(xk+1)k � max���k; 1�k�(xk+1)� ��k(xk+1)k� ; (19)then set �k+1 := k�(xk+1)kand choose �k+1 such that0 < �k+1 � min�� �2��k+1�2 ; �k4 ; ��(xk+1; �k+1)� : (20)If (19) is not satis�ed and dk = �r	(xk), then set�k+1 := �kand choose �k+1 such that0 < �k+1 � min(� �2�k�(xk+1)k�2 ;�k�(xk)k � k�(xk+1)k2� �2 ; �k4 ) : (21)If none of the above conditions is met, set �k+1 := �k and �k+1 := �k.(S.5) Set k  k + 1, and return to Step (S.1).For convenience of presentation, we assume implicitly throughout the theoretical part ofthis paper that the termination parameter � is equal to 0 and that the algorithm does notterminate after a �nite number of iterations.Before we start to investigate the properties of Algorithm 4.1, we give some commentson it: In Step (S.2), we try to solve the (mixed) Newton equation (14) which is the maincomputational e�ort of our method. If the solution of this linear system does not providea direction of su�cient decrease (in the sense of (15)), we switch to the steepest descentdirection of the merit function 	.In Step (S.3), we perform a line search. The line search rule depends on the searchdirection chosen in Step (S.2): If dk is the Newton direction, the line search in (17) is used asa globalization strategy. Note that this line search condition is exactly the same as in Chenet al. [10]. On the other hand, if dk is a gradient step, we use the standard Armijo rule in(18).The complicated part of the algorithm is in Step (S.4), where we update the parameter�k. The �rst part of the updating rules (where condition (19) is satis�ed) is also used byChen et al. [10]. The second part is due to the gradient step. In the following list, we givesome more detailed comments on the role on these two updating rules:(a) In both updating rules, namely in (20) and (21), we reduce �k at least by a factor of1=4. This is reasonable since we want to force �k to go to 0.



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 15(b) The last part of the updating rule (20) controls the distance between our smoothJacobian and the C-subdi�erential, see Lemma 4.2 (b) below.(c) The remaining parts of the updating rules (20) and (21) are important in order toguarantee that Algorithm 4.1 is well-de�ned and globally convergent. We will exploitthese rules several times in our convergence proofs.We now turn to the analysis of Algorithm 4.1. To this end, we introduce the index setK = f0g [�k 2 IN ��� k�(xk)k � max���k�1; 1�k�(xk)� ��k�1(xk)k�� : (22)We stress that, compared to the updating rule (19), there is a shift of the indices in thede�nition of the index set K!We can prove the following result.Lemma 4.2. The following two statements hold:(a) We have k�(xk)� ��k(xk)k � �k�(xk)k (23)for all k � 0.(b) We have distF (�0�k(xk); @C�(xk)) � k�(xk)k (24)for all k 2 K with k � 1.Proof. (a) We distinguish three cases:Case 1: k 2 K:Then we obtain from (20) and Corollary 2.4:k�(xk)� ��k(xk)k � �p�k � �2 �k � ��k = �k�(xk)k:Case 2: k 62 K and the (k � 1)st step is a Newton step (i.e., �k is not updated by (21)):In this case, we have �k = �k�1, so that we obtain from (19):k�(xk)� ��k(xk)k = k�(xk)� ��k�1(xk)k < �k�(xk)k:Case 3: k 62 K and the (k � 1)st step is a gradient step (i.e., �k is updated by (21)):Then we obtain from Corollary 2.4 and (21):k�(xk)� ��k(xk)k � �p�k � �2 k�(xk)k � �k�(xk)k:Statement (a) now follows from these three cases.(b) Statement (b) follows immediately from the de�nition of the threshold value ��(x; �) inProposition 3.4 and the updating rule (20).As a consequence of Lemma 4.2, we obtain



16 C. KANZOW AND H. PIEPERTheorem 4.3. Algorithm 4.1 is well-de�ned.Proof. We only have to show that the exponent mk in the line search rules (17)/(18) is�nite for any k 2 IN. In case of a gradient step, this is well-known since we use the standardArmijo-rule. In case of a Newton step, we can use Part (a) of Lemma 4.2 and prove the�niteness of mk is essentially the same way as this was done in [10, Lemma 3.1].5 Global ConvergenceThe aim of this section is to show that any accumulation point of a sequence generated byAlgorithm 4.1 is at least a stationary point of 	. Unfortunately, the analysis is somewhattechnical due to the di�erent updating rules for Newton and gradient steps in Algorithm 4.1.We therefore need a couple of preliminary results. Some of them, however, are of interest bytheir own.We begin our global convergence analysis with the following observation.Lemma 5.1. Let fxkg � IRn be a sequence generated by Algorithm 4.1. Assume that fxkghas an accumulation point x� which is a solution of NCP(F ). Then the index set K is in�niteand f�kg ! 0.Proof. Assume that K is �nite. Then it follows from (19) and the updating rules for �k inStep (S.4) of Algorithm 4.1 that there is a k0 2 IN such that�k = �k0and k�(xk+1)k > max���k; 1�k�(xk+1)� ��k(xk+1)k� � ��k = ��k0for all k 2 IN with k � k0. However, this contradicts the fact that x� is a solution of NCP(F )so that we have �(x�) = 0.Hence K is an in�nite set. The updating rules for �k therefore immediately imply thatthe whole sequence f�kg converges to 0.We will also need the following simple result.Lemma 5.2. The following two statements hold:(a) If dk is given by (14), we havek��k(xk+1)k < k��k(xk)k:(b) If dk = �r	(xk) and if �k is updated by (21), thenk��k+1(xk+1)k � k��k+1(xk)k:



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 17(Note the di�erence between the index �k and �k+1 in statements (a) and (b).)Proof. Part (a) follows immediately from the line search rule (17).(b) Let dk = �r	(xk) and assume (19) is not satis�ed. From (18), we have k�(xk)k �k�(xk+1)k =: ck > 0. Therefore, together with Corollary 2.4, we getk��k+1(xk+1)k � k��k+1(xk+1)� �(xk+1)k+ k�(xk+1)k� �p�k+1 + k�(xk)k � ck� k��k+1(xk)k+ k�(xk)� ��k+1(xk)k+ �p�k+1 � ck� k��k+1(xk)k+ 2�p�k+1 � ck� k��k+1(xk)k;where the last inequality follows from the special choice of �k+1 made in (21).As a simple consequence of this result, we obtain the followingCorollary 5.3. If k 62 K, then k��k(xk)k � k��k(xk�1)k:Proof. First assume that k 62 K and the updating rule (21) is active (i.e., dk�1 is a gradientstep). Taking into account the shift of indices in the de�nition of the set K, we directlyobtain from Lemma 5.2 (b) k��k(xk)k � k��k(xk�1)k:On the other hand, if (21) is not active (i.e., dk�1 is a Newton direction), then we have�k = �k�1 and therefore k��k(xk)k = k��k�1(xk)k < k��k�1(xk�1)kby Lemma 5.2 (a). This completes the proof.Using these preliminary results, we are now able to show that the iterates xk stay in a certainlevel set. To this end, we �rst note that, in all standard descent methods, the iterates wouldstay in the level set belonging to the level 	(x0) of 	 at the initial iterate x0. This is nolonger true for our algorithm basically because we minimize di�erent merit functions in ourline search rules, namely 	 when using a gradient step, and 	�k when using a Newton step.(Note that a decrease in one merit function does not necessarily imply a decrease in theother.) Fortunately, our following result shows that the possible increase in 	 can't be toodramatic. In fact, this result shows that all iterates xk stay in a level set whose level can bemade arbitrarily close to the level 	(x0).Proposition 5.4. The sequence fxkg generated by Algorithm 4.1 remains in the level setL0 := fx 2 IRn j	(x) � (1 + �)2	(x0)g: (25)



18 C. KANZOW AND H. PIEPERProof. We de�ne the following two index sets:K1 := �k 2 K ��� ��k�1 � 1�k�(xk)� ��k�1(xk)k� (26)and K2 := �k 2 K ��� ��k�1 < 1�k�(xk)� ��k�1(xk)k� : (27)Then K = f0g [K1 [K2, where K is de�ned in (22). Assume K consists of k0 = 0 < k1 <k2 < : : : (notice that K is not necessarily in�nite). Let k 2 IN be an arbitrary but �xedindex and kj the largest number in K such that kj � k. Then we have�k � �kj and �k = �kjin view of the updating rules in Step (S.4) of Algorithm 4.1. We divide the proof into threeparts.(a) In this part, we show that the following inequality holds:k�(xk)k � �kj + 2�p�kj : (28)If kj = k, this inequality is obviously true since �kj = k�(xkj )k in this case. Hence assumethat kj < k in the following. From Corollary 5.3, we obtaink��l(xl)k � k��l(xl�1)kfor all kj < l < kj+1. Since k < kj+1, this impliesk��l(xl)k � k��l(xl�1)kfor all kj < l � k or, equivalently,k��l+1(xl+1)k � k��l+1(xl)kfor all l such that kj � l � k � 1. Then, by Corollary 2.4, we get for all l such thatkj � l � k � 1:k��l+1(xl+1)k+ �p�l+1 � k��l+1(xl)k+ �p�l+1� k��l(xl)k+ k��l+1(xl)� ��l(xl)k+ �p�l+1� k��l(xl)k+ �(p�l �p�l+1) + �p�l+1= k��l(xl)k+ �p�l: (29)



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 19This inequality together with Corollary 2.4 givesk�(xk)k � k��k(xk)k+ k�(xk)� ��k(xk)k� k��k(xk)k+ �p�k� k��k�1(xk�1)k+ �p�k�1...� k��kj (xkj )k+ �p�kj� k�(xkj )k+ k��kj (xkj)� �(xkj )k+ �p�kj� k�(xkj )k+ �p�kj + �p�kj= �kj + 2�p�kj ;
(30)

where the dots indicate the repeated use of (29). This shows that (28) holds for arbitraryk 2 IN.(b) In this part, we show that p�kj � 12j+1 ��k�(x0)kand �kj � rjk�(x0)k;where r := maxf12 ; �g:Indeed, for j = 0, we have k0 = 0 and thereforep�k0 = p�0 = �2�k�(x0)kand �k0 = �0 = r0k�(x0)kby the de�nitions of �0 and �0. For j � 1, Step (S.4) of Algorithm 4.1 shows that�kj � ��kj�1 = ��kj�1 � r�kj�1 for kj 2 K1;and, using Corollary 2.4,�kj � 1�k�(xkj )� ��kj�1(xkj )k � ��p�kj�1 � ��p�kj�1 � 12�kj�1 � r�kj�1 for kj 2 K2:Similarly, we obtain �kj � 14�kj�1 � 14�kj�1:From the de�nitions of �0 and �0, we thus havep�kj � 12jp�0 = 12j+1 ��k�(x0)k (31)



20 C. KANZOW AND H. PIEPERand �kj � rj�0 = rjk�(x0)k: (32)This completes the proof of Part (b).(c) In this part, we now want to verify the statement of our Proposition. Using Parts (a)and (b), we obtain k�(xk)k � �kj + 2�p�kj� rjk�(x0)k+ �2j k�(x0)k� rj(1 + �)k�(x0)k� (1 + �)k�(x0)k: (33)Hence xk 2 L0.Remark 5.5. We explicitly point out that the proof of Proposition 5.4 showed that the fol-lowing inequality holds for all k 2 IN:k�(xk)k � rj(1 + �)k�(x0)k;where, if K = fk0; k1; k2; : : : g with k0 = 0; the index j 2 IN is de�ned to be the largest integerkj 2 K such that kj � k.As an immediate consequence of Remark 5.5, we obtainProposition 5.6. Let fxkg be a sequence generated by Algorithm 4.1 and assume that theindex set K is in�nite. Then each accumulation point of the sequence fxkg is a solution ofNCP(F ).Proof. Let x� be an accumulation point of the sequence fxkg, and let fxkgL be a subsequenceconverging to x�. Since K is in�nite by assumption, we obtain from Remark 5.5:k�(x�)k = limk2L k�(xk)k � limj!1 rj(1 + �)k�(x0)k = 0;where the exponent j 2 IN is de�ned as in Remark 5.5. Hence x� is a solution of NCP(F ).In our next result, we consider the situation that x� is a limit point of a subsequence whichconsists of gradient steps only.Proposition 5.7. Let fxkg be a sequence generated by Algorithm 4.1 and let fxkgL be asubsequence converging to a point x� 2 IRn. If dk = �r	(xk) for all k 2 L, then x� is astationary point of 	.



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 21Proof. If the index set K is in�nite, the accumulation point x� is a solution of NCP(F ) byProposition 5.6. Hence x� is a global minimum and therefore a stationary point of 	.So let K be �nite. Then, without loss of generality, we can assume that K \ L = ; sothat the updating rule (21) is active for all k 2 L. This, in particular, implies that f�kg ! 0.Let k̂ be the largest number in K (which exists since K is �nite). Then we obtain fromthe updating rules in Step (S.4) of Algorithm 4.1 for all k > k̂:�k � �k̂; �k = �k̂ = k�(xk̂)k; (34)k�(xk)k > ��k�1 = �k�(xk̂)k > 0 (35)and �k�(xk)k > k�(xk)� ��k�1(xk)k: (36)From (35), we get 	(xk) > �2	(xk̂) > 0 (37)for all k > k̂.The proof is by contradiction: Assume that r	(x�) 6= 0. Our �rst aim is to show thatlim infk2L tk = 0. Suppose that lim infk2L tk = t� > 0. Since dk = �r	(xk) for all k 2 L,we obtain from the Armijo-rule (18):	(xk+1)� 	(xk) � ��tkkr	(xk)k2 � � c2 (38)for all k 2 L su�ciently large, where c := �t�kr	(x�)k2 > 0. Since f�kg ! 0, Corollary 2.4shows that j	�k(xk+1)� 	(xk+1)j � c4 and j	�k(xk)�	(xk)j � c4for all k 2 IN su�ciently large. Using f�kg ! 0 once again and taking into account that thesequence fk�(xk)kg is bounded by Proposition 5.4, we also have2�p�kk�(xk)k+ 2�2�k � c4 (39)for all k 2 IN large enough. Let L consist of l0; l1; l2; : : : . Then, for all lj su�ciently large,we obtain in a similar way as in the proof of Proposition 5.4 (see (30) and recall that K is�nite): 	(xlj+1) = 12k�(xlj+1)k2� 12 �k�(xlj+1)k+ 2�p�lj+1�2= 	(xlj+1) + 2�p�lj+1k�(xlj+1)k+ 2�2�lj+1� 	(xlj+1) + c4 ; (40)where the last inequality follows from (39). Using (38) and (40), we obtain	(xlj+1)�	(xlj ) = 	(xlj+1)�	(xlj+1)| {z }� c4 +	(xlj+1)�	(xlj )| {z }�� c2 � � c4



22 C. KANZOW AND H. PIEPERfor all lj large enough. Hence f	(xlj )g ! �1 for j !1, but this contradicts the fact that	(x) � 0 for all x 2 IRn. Hence we have lim infk2L tk = 0:Subsequencing if necessary, we can assume that limk2L tk = 0. We now want to derive acontradiction to our assumption that r	(x�) 6= 0. Since limk2L tk = 0, the full stepsize isnever accepted for all k 2 L su�ciently large. Hence we obtain from the Armijo-rule (18)	(xk + �mk�1dk) > 	(xk)� ��mk�1kdkk2or, equivalently, 	(xk + �mk�1dk)� 	(xk)�mk�1 > ��kdkk2: (41)By taking the limit k !1 on L, we obtain from (41), the continuous di�erentiability of 	,dk = �r	(xk) for all k 2 L and the fact that �mk�1 ! 0 for k !L 1:�r	(x�)Tr	(x�) � ��r	(x�)Tr	(x�):This yields 1 � �; a contradiction to our choice of the parameter �. Hence we must haver	(x�) = 0; and this completes the proof of Proposition 5.7.We are now able to prove the main global convergence result for Algorithm 4.1.Theorem 5.8. Let fxkg be a sequence generated by Algorithm 4.1. Then each accumulationpoint of the sequence fxkg is a stationary point of 	.Proof. If K is in�nite, the conclusion follows immediately from Proposition 5.6. Hence wecan assume that K contains only �nitely many indices.Similar to the proof of Proposition 5.7, we denote by k̂ the largest index in K. Then(34), (35), (36) and (37) hold for all k > k̂.Let x� be an accumulation point of the sequence fxkg; and let fxkgL be a subsequenceconverging to x�. If dk = �r	(xk) for in�nitely many k 2 L, then x� is a stationary point of	 by Proposition 5.7. Hence we can assume without loss of generality that dk is the Newtondirection computed as a solution of the linear system (14) for all k 2 L, so thatk�(xk)k = k�0�k(xk)dkk � k�0�k(xk)k kdkk (42)holds for all k 2 L. Since K is �nite, we can further assume without loss of generality thatk 62 K for all k 2 L, i.e., neither the updating rule (20) nor the updating rule (21) is activefor k 2 L.The proof is by contradiction: Assume that x� is not a stationary point of 	. Since thesequence f�kg is monotonically decreasing and bounded from below, it converges to some�� � 0. If �� > 0, then it follows from the updating rules of Step (S.4) in Algorithm 4.1 that�k is actually constant for all k su�ciently large.The remaining part of this proof is divided into three steps.



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 23(a) We �rst show that there exist positive constants m and M such that0 < m � kdkk �M for all k 2 L: (43)In fact, if fkdkkg~L ! 0 on a subset ~L � L, we would have from (42) that fk�(xk)kg~L ! 0because the sequence f�0�k(xk)g~L is obviously bounded on the convergent sequence fxkg~L.But then the continuity of � would imply that �(x�) = 0, so that K would be in�nite byLemma 5.1. This, however, would contradict our assumption that K is �nite.On the other hand, we have from (15) for all k 2 L:�k�0�k(xk)T�(xk)k kdkk � �(xk)T�0�k(xk)dk � ��kdkkp: (44)Since f�0�k(xk)T�(xk)gL is convergent (either by Lemma 2.6 or because �k is eventuallyconstant) and therefore bounded, there exists a constant C > 0 such thatk�0�k(xk)T�(xk)k � Cfor all k 2 L. With (44), we have�kdkkp � k�0�k(xk)T�(xk)kkdkk � Ckdkkfor all k 2 L. Since p > 1, this shows that fkdkkgL is bounded. This completes the proof ofPart (a).(b) We now show that lim infk2L tk = 0. Suppose that lim infk2L tk =: t� > 0. Then from(37) and the line search rule (17), we have for all k 2 L su�ciently large:	�k(xk+1)� 	�k(xk) � �2�tk	(xk) � ��t��2	(xk̂) < 0: (45)We de�ne c := �t��2	(xk̂) > 0 and consider two cases.Case 1: f�kg ! �� > 0.Then we have �k = �� is constant for k 2 IN su�ciently large. Hence we obtain from (45)for all k 2 L large enough:	��(xk+1)�	��(xk) = 	�k(xk+1)�	�k(xk) � �c: (46)Since �k is eventually constant, the updating rule (21) excludes the existence of gradientsteps for k 2 IN su�ciently large. Hence, if we assume that L consists of l0; l1; l2; : : : , weobtain from Lemma 5.2 (a) for all lj su�ciently large:	��(xlj+1)� 	��(xlj ) � 	��(xlj+1)� 	��(xlj ) � �c:This implies 	��(xlj )! �1for j !1, a contradiction to 	��(x) � 0 for all x 2 IRn.



24 C. KANZOW AND H. PIEPERCase 2: f�kg ! 0.Then we obtain from Corollary 2.4 thatj	�k(xk+1)� 	(xk+1)j � c4 and j	�k(xk)�	(xk)j � c4 (47)for all k 2 IN su�ciently large. Again, let the sequence L consists of l0; l1; l2; : : : . Then thefollowing inequality holds for all lj large enough:	(xlj+1)�	(xlj ) =� (	�lj (xlj+1)� 	(xlj+1)) + (	�lj (xlj )� 	(xlj ))+ 	�lj (xlj+1)� 	�lj (xlj )� j	�lj (xlj+1)�	(xlj+1)j| {z }� c4 by (47) + j	�lj (xlj )� 	(xlj )j| {z }� c4 by (47)+	�lj (xlj+1)� 	�lj (xlj )| {z }��c by (45)�� c2 :
(48)

The remaining part of the proof for Case 2 is now similar to the one for Proposition 5.7: Inparticular, for lj large enough, we can prove the following inequality in essentially the sameway as in the proof of Proposition 5.7 (see (40) and recall that K is �nite):	(xlj+1) � 	(xlj+1) + c4 : (49)Combining (48) and (49), we obtain	(xlj+1)�	(xlj ) = 	(xlj+1)� 	(xlj+1) + 	(xlj+1)� 	(xlj ) � c4 � c2 = � c4 :This implies 	(xlj )! �1 for j !1, contradicting the fact that 	(x) � 0 for all x 2 IRn.Since both Case 1 and Case 2 lead to a contradiction, the proof of Part (b) is alsocompleted.(c) We now turn back to the main part of our proof, i.e., we will now derive a contradictionto our assumption that r	(x�) 6= 0.Because of Part (b), we have lim infk2L tk = 0. Let L0 be a subsequence of L such thatftkgL0 converges to 0. Then mk > 0 for all k 2 L0 su�ciently large, where mk 2 IN denotesthe exponent from the line search rule (17). By this line search rule, we therefore have�2��mk�1	(xk) < 	�k(xk + �mk�1dk)� 	�k(xk)for all k 2 L0 large enough. Dividing both sides by �mk�1, we obtain�2�	(xk) < 	�k(xk + �mk�1dk)�	�k(xk)�mk�1 :



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 25Let �� be the limit of f�kg, and if �� = 0, we write r	��(x�) for the gradient of theunperturbed function 	 at the limit point x�. By (43) we can assume, subsequencing ifnecessary, that fdkgL0 ! d� 6= 0, so that, passing to the limit, we get�2�	(x�) � r	��(x�)Td�: (50)For �� = 0 this follows from Lemma 2.7, and if �� > 0, then �k = �� for su�ciently large k,so that (50) follows from the Mean Value Theorem.Using (14), (36) and Corollary 2.4, we further have for k 2 L0:r	�k(xk)Tdk =� �(xk)T��k(xk)=� 2	(xk) + �(xk)T (�(xk)� ��k(xk))�� 2	(xk) + k�(xk)k k�(xk)� ��k�1(xk)k+ k�(xk)k k��k�1(xk)� ��k(xk)k� � 2	(xk) + 2�	(xk) + �k�(xk)k(p�k�1 �p�k)=� 2(1� �)	(xk) + �k�(xk)k(p�k�1 �p�k): (51)
By taking the limit k !L0 1 in (51), we obtain from (50) (and Lemma 2.6 if �� = 0)�2�	(x�) � r	��(x�)Td� � �2(1� �)	(x�); (52)since fk�(xk)kg is bounded (by Proposition 5.4), and (p�k�1 � p�k) ! 0 (because f�kgconverges). We have 	(x�) > 0, because otherwise K would be in�nite. Therefore (52) gives� � (1� �) which is a contradiction to � < 12(1 � �). This, �nally, completes the proof ofTheorem 5.8.Note that Theorem 5.8 is a subsequential convergence result to stationary points of 	 only.However, it is well-known that such a stationary point x� is already a solution of NCP(F )if, e.g., the Jacobian F 0(x�) is a P0-matrix, see [16, 13]. Moreover, Proposition 5.6 providesanother su�cient condition for an accumulation point to be a solution of the complementarityproblem.6 Local ConvergenceIn this section, we want to show that Algorithm 4.1 is locally Q-superlinearly/Q-quadraticallyconvergent under certain assumptions. As a �rst step in this direction, we show that thewhole sequence fxkg generated by Algorithm 4.1 converges to a unique point x� if certainconditions hold. The proof of this result is based on the following Proposition by Mor�eand Sorensen [31] (note that their result is fairly general and completely independent of anyspeci�c algorithm).Proposition 6.1. Assume that x� 2 IRn is an isolated accumulation point of a sequencefxkg � IRn (not necessarily generated by Algorithm 4.1) such that fkxk+1 � xkkgL ! 0 forany subsequence fxkgL converging to x�. Then the whole sequence fxkg converges to x�.



26 C. KANZOW AND H. PIEPERProposition 6.1 enables us to establish the following result.Theorem 6.2. Let fxkg be a sequence generated by Algorithm 4.1. If one of the accumu-lation points of the sequence fxkg, let us say x�, is an isolated solution of NCP(F ), thenfxkg ! x�.Proof. Let x� be an isolated solution of NCP(F ). We want to verify the assumptions ofProposition 6.1. To this end, we �rst show that x� is also an isolated accumulation point ofthe sequence fxkg.Since x� solves NCP(F ), Lemma 5.1 shows that the index set K is in�nite and f�kgconverges to 0. Hence Proposition 5.6 shows that each accumulation point of the sequencefxkg is already a solution of NCP(F ). Thus x� is necessarily an isolated accumulation pointof the sequence fxkg.Now let fxkgL be an arbitrary subsequence of fxkg converging to x�. From the updatingrule in Step (S.3) of Algorithm 4.1, we havekxk+1 � xkk = �mkkdkk � kdkk: (53)Therefore it su�ces to show that fkdkkgL ! 0. Since 	 is continuously di�erentiable andsince the solution x� of NCP(F ) is, in particular, a stationary point of 	, we havefr	(xk)gL !r	(x�) = 0: (54)Suppose the sequence fdkgL contains only a �nite number of Newton directions. ThenfkdkkgL ! 0 follows immediately. Assume therefore that there is a subsequence fdkgL0 offdkgL such that dk is the solution of the linear system (14) for all k 2 L0.From (15), we obtain�kdkkp � �(�0�k(xk)T�(xk))T dk � k�0�k(xk)T�(xk)k kdkkfor all k 2 L0, from which we getkdkk �  k�0�k(xk)T�(xk)k� ! 1p�1 (55)because p > 1. Since f�kg ! 0, we obtainlimk!1;k2L0�0�k(xk)T�(xk)! r	(x�) = 0from Lemma 2.6. Hence the right-hand side of (55) converges to 0, so that fdkgL0 ! 0. Weobviously also have fdkgLnL0 ! 0 from (54) (if the set L n L0 is in�nite). Hence (53) showsthat fkxk+1 � xkkgL ! 0:The assertion now follows from Proposition 6.1.



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 27Remark 6.3. We explicitly point out that, in the proof of Theorem 6.2, we have actu-ally shown that if the sequence fxkg generated by Algorithm 4.1 converges to a solution ofNCP(F ), then fkdkkg ! 0. This fact will be important in the proof of Theorem 6.6 below.In order to verify that Algorithm 4.1 eventually takes the full stepsize tk = 1, we state thefollowing Lemma which was shown by Chen, Qi and Sun [10, Lemma 3.2].Lemma 6.4. If there exists a scalar! 2 �12 � (1� �� 2�)22(2 + �)2 ; 12�such that 	(y) � 	(xk)� 2!	(xk) (56)for some k 2 K and y 2 IRn, then it holds	�k(y) � 	�k(xk)� 2�	(xk); (57)where �k is the smoothing parameter in the kth step.In the proof of our main local convergence result, we will also utilize the following Propositionwhich was originally shown by Facchinei and Soares [16]. An alternative proof of this resultwas given by Kanzow and Qi [29] under slightly di�erent assumptions. Here we restate theresult from [29].Proposition 6.5. Let G : IRn ! IRn be locally Lipschitzian and x� 2 IRn with G(x�) = 0such that all elements in @G(x�) are nonsingular, and assume that there are two subsequencesfxkg � IRn and fdkg � IRn withlimk!1xk = x� and kxk + dk � x�k = o(kxk � x�k):Then kG(xk + dk)k = o(kG(xk)k):Before stating our local convergence result, we recall that a solution x� of NCP(F ) is calledR-regular if the submatrix F 0(x�)�� is nonsingular and the Schur complementF 0(x�)�� � F 0(x�)��F 0(x�)�1��F 0(x�)�� 2 IRj�j�j�jis a P -matrix, see Robinson [38]; here, we have used the standard index set notation� := fij x�i > 0 = Fi(x�)g;� := fij x�i = 0 = Fi(x�)g; := fij x�i = 0 < Fi(x�)g:



28 C. KANZOW AND H. PIEPERTheorem 6.6. Let fxkg be a sequence generated by Algorithm 4.1. If one of the limit pointsof the sequence fxkg, let us say x�, is an R-regular solution of NCP(F ), then fxkg ! x�, andthe convergence rate is at least Q-superlinear. If F : IRn ! IRn is continuously di�erentiablewith a locally Lipschitzian Jacobian, then the convergence rate is Q-quadratic.Proof. We �rst note that the assumed R-regularity of the solution x� implies that allelements of the C-subdi�erential @C�(x�) are nonsingular, see [16]. Hence Proposition 2.5in [33] together with Proposition 2.2 shows that x� is an isolated solution of �(x) = 0 andtherefore also of NCP(F ). Hence, by Theorem 6.2, the whole sequence fxkg converges to x�.Let K be again the set de�ned by (22), which, by Lemma 5.1, is in�nite since the sequencefxkg converges to a solution of NCP(F ). In particular, we have fxkgK ! x�.We now divide the proof into four steps.(a) In this part, we show that, for all k 2 K su�ciently large, the matrix �0�k(xk) is nonsin-gular and satis�es the inequality k�0�k(xk)�1k � 2cfor a certain constant c > 0.Since fxkg converges to x�, the assumed R-regularity together with the upper semicon-tinuity of the C-subdi�erential implies that, for all k 2 IN su�cienly large, all matricesVk 2 @C�(xk) are nonsingular with kV �1k k � c for some constant c > 0. We now want toshow that the same is true for �0�k(xk). Let Hk 2 @C�(xk) such thatdistF (�0�k(xk); @C�(xk)) = k�0�k(xk)�HkkF(note that such an element exists since the set @C�(xk) is nonempty and compact). With(24) we have kHk � �0�k(xk)k � kHk � �0�k(xk)kF � �k (58)for all k 2 K. Hence it follows thatkI �H�1k �0�k(xk)k = kH�1k (Hk � �0�k(xk))k� kH�1k k kHk � �0�k(xk)k� �kc: (59)Since K is in�nite, we have �k ! 0 in view of the updating rules in Step (S.4) of Algorithm4.1. Therefore, for k 2 K large enough such that �k � 12c , we havekI �H�1k �0�k(xk)k � 12 :From the Perturbation Lemma [14, Theorem 3.1.4], we obtain that �0�k(xk) is nonsingularfor all k 2 K large enough withk�0�k(xk)�1k � 2kH�1k k � 2c: (60)



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 29Hence system (14) admits a solution for all k 2 K su�ciently large, and the proof of Part(a) is completed.(b) We next want to show that, for all k 2 K su�ciently large, the solution dk of the linearsystem (14) satis�es the descent condition (15).To this end, we �rst note that the linear system (14) has a unique solution for all k 2 Ksu�ciently large by Part (a). We now show that these dk satisfy the inequality�(xk)T�0�k(xk)dk � ��1kdkk2 (61)for a certain positive constant �1. Indeed, this follows from the fact thatkdkk � k�0�k(xk)�1k k�(xk)kby (14), so that (60) implies�(xk)T�0�k(xk)dk = �k�(xk)k2 � �kdkk24c2 (62)for all k 2 K large enough. Hence (61) follows from (62) by taking �1 = 1=(4c2). Sincefkdkkg ! 0 by Remark 6.3, it is now easy to see that (61) eventually implies (15) for any� > 0 und p > 2. Hence, for all k 2 K su�ciently large, the search direction dk is alwaysgiven by (14).(c) In view of Parts (a) and (b), the search direction dk is given by (14) for all k 2 K largeenough. In this step, we want to show that there is an index �k 2 K such that if k 2 K isany index with k � �k, then the index k + 1 also belongs to the set K and xk+1 = xk + dk.Repeating this argument, it then follows that eventually all iterations k belong to the set K,and that the full step tk = 1 is always accepted.In order to prove this statement, we recall from Part (a) that there is a constant c > 0such that k�0�k(xk)�1k � 2c for all k 2 K su�ciently large. From Algorithm 4.1 and (58),we therefore obtain for all k 2 K large enough:kxk + dk � x�k= kxk � x� � �0�k(xk)�1�(xk)k= k�0�k(xk)�1(�0�k(xk)(xk � x�)� �(xk) + �(x�))k� k�0�k(xk)�1k �k(�0�k(xk)�Hk)(xk � x�)k+ kHk(xk � x�)� �(xk) + �(x�)k�� 2c(�kkxk � x�k+ kHk(xk � x�)� �(xk) + �(x�)k); (63)where, again, Hk 2 @C�(xk) is chosen in such a way thatdistF (�0�k(xk); @C�(xk)) = k�0�k(xk)�HkkF ;see Part (a) of this proof. Using Proposition 2.2 (a) and taking into account that �k ! 0,we have kxk + dk � x�k = o(kxk � x�k) for k !1; k 2 K: (64)



30 C. KANZOW AND H. PIEPERHence (64) and Proposition 6.5 show thatk�(xk + dk)k = o(k�(xk)k) for k !1; k 2 K: (65)Let ! := maxn12 � (1���2�)22(2+�)2 ; 1��22 o. Then (65) implies that there exists an index �k 2 Ksuch that 	(xk + dk) � 	(xk)� 2!	(xk) (66)for all k 2 K with k � �k. Hence, by Lemma 6.4, we therefore have	�k(xk + dk) � 	�k(xk)� 2�	(xk) (67)for all k 2 K with k � �k. Hence the full stepsize of 1 will eventually be accepted for allk � �k, k 2 K. In particular, x�k+1 = x�k + d�k, and from (66) and the de�nition of !, weobtain k�(x�k+1)k � p1� 2!k�(x�k)k � �k�(x�k)k = ���k;which implies that �k + 1 2 K; cf. (22). Repeating the above process, we may prove that forall k � �k, we have k 2 Kand xk+1 = xk + dk:This completes the proof of Part (c).(d) We now turn to the �nal part of the proof where we want to verify the Q-superlinear/Q-quadratic rate of convergence. Since k 2 K and tk = 1 for all k 2 IN su�ciently large byPart (c), the Q-superlinear convergence follows immediately from (64).If F : IRn ! IRn is continuously di�erentiable with a locally Lipschitzian Jacobian, thenProposition 2.2 (b) shows thatkHk(xk � x�)� �(xk) + �(x�)k = O(kxk � x�k2):Since � is obviously locally Lipschitzian, we further have�k = k�(xk)k = k�(xk)� �(x�)k = O(kxk � x�k):Hence the Q-quadratic rate of convergence of fxkg to x� follows from (63) by using similararguments as for the proof of the local Q-superlinear convergence.



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 317 Numerical ResultsWe implemented the Jacobian smoothing method fromAlgorithm 4.1 in MATLAB and testedit on a SUN SPARC 20 station. As test problems, we use all complementarity problems andall available starting points from the MCPLIB and GAMSLIB collections.The implemented version of the algorithm di�ers from the one described before in mainlytwo aspects: On the one hand, we replaced the monotone Armijo-rule by a nonmonotonevariant [21]. For the details of the implementation of this nonmonotone Armijo-rule, we referthe interested reader to [32].On the other hand, we incorporated a heuristic backtracking strategy in our implemen-tation in order to avoid domain violations which occur quite often since the mapping F inmany examples of the test libraries is not de�ned everywhere. To this end, we �rst computet̂k := maxf�lkj l = 0; 1; 2; : : :gin such a way that F (xk+ t̂kdk) is well-de�ned, and then we take t̂k as initial steplength withwhich we go into the nonmonotone line search test. Note that we allow the backtrackingfactor �k to vary in each iteration. In our implementation we choose �k between 0:5 and0:75, depending on the success of the last backtracking step.The algorithm terminates if one of the following conditions is satis�ed:	(xk) � �1; kr	(xk)k � �2; k > kmax or tk < tmin:In the implementation we used the following parameter settings:� = 10�18; p = 2:1; � = 0:5; � = 10�4;  = 30; � = 0:95; � = 0:9;and �1 = 10�12; �2 = 10�6; kmax = 300; tmin = 10�16:We report the results for all complementarity problems in the MCPLIB and GAMSLIBlibraries and all available starting points in Tables 1 and 2, respectively. The columns inthese tables have the following meanings:problem: name of the test problem in the speci�c test libraryn: dimension of the test problemSP: number of starting pointk: number of iterationsF -eval: number of function evaluationsN: number of Newton steps takenG: number of gradient steps taken	(xf): 	(x) at the �nal iterate x = xfkr	(xf)k: kr	(x)k at the �nal iterate x = xfB: number of backtracking steps.From the de�nition of the algorithm it follows that the number of Jacobian evaluations isone more than the number of iterations k.



32 C. KANZOW AND H. PIEPERTable 1: Numerical results for MCPLIB test problemsproblem n SP k F -ev. N G 	(xf ) kr	(xf)k Bbertsekas 15 1 34 271 34 0 1.5e-19 3.5e-08 0bertsekas 15 2 37 353 37 0 1.4e-16 1.0e-06 0bertsekas 15 3 42 406 42 0 2.5e-19 4.4e-08 0billups 1 1 27 389 27 0 4.1e-17 1.8e-08 0colvdual 20 1 15 37 15 0 1.0e-17 4.8e-07 0colvdual 20 2 26 64 26 0 9.4e-16 4.4e-06 0colvnlp 15 1 16 39 16 0 2.7e-17 7.8e-07 0colvnlp 15 2 14 26 14 0 6.8e-15 1.7e-05 0cycle 1 1 3 5 3 0 8.1e-16 4.0e-08 0explcp 16 1 5 6 5 0 2.8e-15 7.5e-08 0hanskoop 14 1 9 14 9 0 2.9e-16 3.3e-08 0hanskoop 14 2 9 12 9 0 1.4e-17 1.8e-08 0hanskoop 14 3 8 12 8 0 9.5e-16 1.5e-07 0hanskoop 14 4 9 13 9 0 4.2e-18 1.0e-08 0hanskoop 14 5 10 16 10 0 3.3e-18 8.9e-09 1josephy 4 1 8 11 8 0 1.3e-19 1.7e-09 0josephy 4 2 7 12 7 0 1.7e-18 1.5e-08 0josephy 4 3 13 18 13 0 1.0e-14 4.8e-07 0josephy 4 4 5 6 5 0 2.6e-20 7.6e-10 0josephy 4 5 5 6 5 0 2.4e-13 2.6e-06 0josephy 4 6 6 8 6 0 8.1e-21 9.9e-10 0kojshin 4 1 10 17 10 0 3.3e-24 1.6e-11 0kojshin 4 2 9 21 9 0 2.9e-15 1.2e-07 0kojshin 4 3 7 10 7 0 1.8e-15 2.0e-07 0kojshin 4 4 12 26 12 0 8.0e-17 1.6e-07 0kojshin 4 5 5 7 5 0 5.0e-18 8.8e-09 0kojshin 4 6 6 8 6 0 4.7e-25 8.5e-12 0mathinum 3 1 7 11 7 0 1.7e-24 3.8e-12 0mathinum 3 2 5 6 5 0 4.4e-15 2.6e-07 0mathinum 3 3 5 6 5 0 9.2e-18 8.6e-09 0mathinum 3 4 7 8 7 0 5.1e-23 2.8e-11 0mathisum 4 1 5 7 5 0 4.1e-19 2.1e-09 0mathisum 4 2 6 7 6 0 1.5e-13 1.3e-06 0mathisum 4 3 8 10 8 0 9.0e-17 2.3e-08 0mathisum 4 4 6 7 6 0 1.5e-22 4.1e-11 0nash 10 1 8 9 8 0 5.3e-20 2.4e-08 0nash 10 2 11 25 11 0 1.8e-22 6.9e-10 0



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 33Table 1 (continued): Numerical results for MCPLIB test problemsproblem n SP k F -ev. N G 	(xf ) kr	(xf)k Bpgvon105 105 1 33 81 33 0 1.1e-13 4.7e-03 33pgvon105 105 2 33 98 33 0 1.3e-14 7.3e-03 31pgvon105 105 3 69 251 69 0 6.2e-17 5.0e-04 68pgvon106 106 1 23 49 23 0 4.6e-14 4.0e-07 23powell 16 1 13 41 13 0 3.3e-17 9.1e-08 4powell 16 2 14 36 14 0 2.4e-14 3.3e-06 4powell 16 3 23 45 23 0 1.3e-13 1.5e-06 4powell 16 4 16 45 16 0 9.7e-16 5.7e-07 6scarfanum 13 1 10 13 10 0 1.7e-16 1.7e-07 0scarfanum 13 2 12 15 12 0 1.7e-16 1.7e-07 0scarfanum 13 3 12 16 12 0 1.7e-16 1.7e-07 1scarfasum 14 1 8 11 8 0 1.1e-18 3.1e-08 0scarfasum 14 2 10 14 10 0 9.6e-17 2.8e-07 0scarfasum 14 3 11 14 11 0 2.5e-19 1.4e-08 0scarfbnum 39 1 23 36 23 0 1.7e-14 3.4e-05 0scarfbnum 39 2 24 42 24 0 2.4e-14 3.7e-05 0scarfbsum 40 1 20 56 20 0 1.2e-16 1.9e-06 0scarfbsum 40 2 26 72 26 0 9.1e-20 5.2e-08 0sppe 27 1 7 8 7 0 4.8e-14 4.4e-07 0sppe 27 2 6 7 6 0 4.8e-25 2.9e-12 0tobin 42 1 9 12 9 0 4.8e-13 9.9e-07 0tobin 42 2 11 15 11 0 4.8e-24 3.1e-12 0Looking at Tables 1 and 2, the most obvious observation is that we do not have a singlefailure, i.e., the main termination criterion	(xk) � 10�12is satis�ed for all test problems including the di�cult ones like billups, colvdual, vonthmcpand vonthmge, to mention just a few.As known to the authors, there is currently only one other algorithm available which alsohas no failures on these problems, namely the semismooth Newton-type method by Chen,Chen and Kanzow [5]. Compared to that algorithm, it seems that our Jacobian smoothingmethod sometimes needs less many iterations, whereas the number of function evaluationsis usually higher. This may indicate that the step size rule (17) is not \optimal" and may beimproved. However, function evaluations are, in general, considerably cheaper than, e.g., thesolution of the linear system (14). We also stress that the philosophy of these two methodsis di�erent, so it is di�cult to compare them with each other.On the other hand, however, we could try to compare our algorithm with its underlyingsemismooth Newton method from De Luca et al. [13]. It turns out that our algorithm ismore reliable and that we use considerably less many gradient steps. In fact, we have just



34 C. KANZOW AND H. PIEPERTable 2: Numerical results for GAMSLIB test problemsproblem n SP k F -ev. N G 	(xf) kr	(xf)k Bcafemge 101 1 11 19 11 0 7.9e-25 1.7e-09 0cammge 128 1 0 1 0 0 5.1e-13 3.1e-04 0co2mge 208 1 1 2 1 0 1.3e-14 1.0e-07 0dmcmge 170 1 88 523 88 0 1.3e-21 2.1e-07 1etamge 114 1 20 49 20 0 1.6e-15 3.6e-05 0�nmge 153 1 0 1 0 0 2.2e-14 7.6e-06 0hansmcp 43 1 17 31 17 0 3.3e-14 7.8e-07 0hansmge 43 1 14 30 14 0 4.9e-13 9.1e-07 0harkmcp 32 1 13 16 13 0 2.0e-16 2.9e-08 0kehomge 9 1 10 12 10 0 1.7e-20 7.9e-09 0mr5mcp 350 1 10 17 10 0 1.7e-18 2.8e-07 1nsmge 212 1 12 19 12 0 5.6e-18 2.9e-07 0oligomcp 6 1 6 7 6 0 7.1e-17 1.5e-07 0sammge 23 1 0 1 0 0 0.0 0.0 0scarfmcp 18 1 9 12 9 0 9.2e-17 1.3e-07 1scarfmge 18 1 11 15 11 0 5.3e-13 1.1e-05 0shovmge 51 1 1 2 1 0 5.6e-14 5.7e-05 0threemge 9 1 0 1 0 0 0.0 0.0 0transmcp 11 1 13 22 13 0 3.1e-16 2.5e-08 0two3mcp 6 1 8 12 8 0 4.8e-13 2.0e-05 0unstmge 5 1 8 9 8 0 1.6e-13 7.6e-07 0vonthmcp 125 1 54 280 54 0 6.1e-15 2.9e-02 37vonthmge 80 1 31 97 30 1 4.5e-13 1.3e-04 0one gradient step, namely on example vonthmge. We believe that this indicates that thesmoothing parameter � regularizes the Jacobian matrix �0�(x) to some extent. This is alsoreected by some known theoretical results, e.g., the Jacobian �0�(x) is nonsingular if F 0(x) isa P0-matrix (see [26]), whereas an element from the C-subdi�erential @C�(x) is nonsingularonly under a slightly stronger assumption (see [13]).We �nally stress that we also tested some other parameter settings; there, we usually hadsome more gradient steps, but still less than for the method from [13]. This fact may explainwhy our Jacobian smoothing method seems to be superior to its underlying semismoothNewton method from [13] since it is well-accepted in the community that taking as manyNewton steps as possible usually improves the overall behaviour of the algorithm.8 Final RemarksIn this paper, we introduced a new algorithm for the solution of a general (i.e., not necessarilymonotone) complementarity problem. We call this algorithm a Jacobian smoothing method



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 35since, basically, it is a perturbation of a semismooth Newton method being applied to areformulation of the complementarity problem as a nonsmooth system of equations �(x) = 0.In this perturbation, we replace an element from the generalized Jacobian by a standardJacobian of a smooth operator �� which approximates � for �! 0.The basic idea of this Jacobian smoothing method is taken from the recent paper [10] byChen, Qi and Sun. We modi�ed their algorithm in such a way that it becomes applicableto general complementarity problems. Although this modi�cation makes the convergenceanalysis rather technical (especially the global one), the main convergence results are quitenice. Moreover, the numerical performance is extremely promising. In fact, we are ableto solve all complementarity problems from the MCPLIB and GAMSLIB test problem col-lections. In particular, our Jacobian smoothing method is considerably more reliable thanthe semismooth method by De Luca et al. [13] which is the underlying semismooth Newtonmethod for our algorithm.It would be interesting to see how our perturbation technique would work if we apply it toother equation-reformulations of the nonlinear complementarity problem like those presentedin [28, 35, 5]. Finally, it would also be interesting to see how the Jacobian smoothing methodwould work on mixed complementarity problems. An extension to this more general classof problems seems possible by using, e.g., an idea from Billups [1], see also Qi [35] and Sunand Womersley [39]. We leave this as a future research topic.References[1] S.C. Billups: Algorithms for Complementarity Problems and Generalized Equations.Ph.D. Thesis, Computer Sciences Department, University of Wisconsin, Madison, WI,August 1995.[2] S.C. Billups, S.P. Dirkse and M.C. Ferris: A comparison of algorithms for largescale mixed complementarity problems. Computational Optimization and Applications7, 1997, pp. 3{25.[3] J. Burke and S. Xu: The global linear convergence of a non-interior path-followingalgorithm for linear complementarity problems. Technical Report, Department of Math-ematics, University of Washington, Seattle, WA, December 1996 (revised July 1997).[4] B. Chen and X. Chen: A global and local superlinear continuation-smoothing methodfor P0 + R0 and monotone NCP. Technical Report, Department of Management andSystems, Washington State University, Pullman, WA, May 1997.[5] B. Chen, X. Chen and C. Kanzow: A penalized Fischer-Burmeister NCP-function:Theoretical investigation and numerical results. Preprint 126, Institute of Applied Math-ematics, University of Hamburg, Hamburg, Germany, September 1997.[6] B. Chen and P.T. Harker: A non-interior-point continuation method for linearcomplementarity problems. SIAM Journal on Matrix Analysis and Applications 14, 1993,pp. 1168{1190.
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