
1Lineality Removal for Copositive{Plus Normal Maps 1Menglin Cao and Michael C. FerrisUniversity of Wisconsin,Computer Sciences Department,1210 West Dayton Street, Madison, Wisconsin 53706email: ferris@cs.wisc.eduAbstract. We are concerned with solving a�ne variational inequalities de�ned by a linearmap A and a polyhedral set C. Most of the existing pivotal methods for such inequalities ormixed linear complementarity problems depend on the existence of extreme points in C ora certain non{singularity property of A with respect to the lineality of C. In this paper, weprove that if A is copositive{plus with respect to the recession cone of C, then the linealityspace can be removed without any further assumptions. The reductions given here extendthe currently known pivotal methods to solve a�ne variational inequalities or prove that nosolution exists, whenever A is copositive{plus withe respect to the recession cone of C.Keywords: Copositive{plus matrices, normal maps, lineality space, variational inequalities, mixed comple-mentarity problemsAMS Subject Classi�cation: 90C33, 90C30, 52A251. IntroductionWe are interested in the a�ne variational inequality problem which can be described asfollows. Let C 2 IRn be a polyhedral convex set and A be a linear transformation from IRnto IRn. We wish to �nd a point z 2 C such thathA(z)� a; c� zi � 0; 8c 2 C: (AVI)The problem can be equivalently formulated as0 2 A(z)� a+ @ C(z); (GE)where  C(�) is the indicator function of the set C. The solutions of such problems arisefor example in the determination of Newton{type methods for variational inequalities andmixed complementarity problems.In [1], (AVI) was treated as the piecewise linear equationAC(x) = a; (NE)where AC is the normal map AC(x) := A(�C(x)) + x� �C(x):1This material is based on research supported by the National Science Foundation Grant CCR{9157632and the Air Force O�ce of Scienti�c Research Grant F49620{94{1{0036



2Here �C(x) denotes the projection (with respect to the Euclidean norm) of x onto the set C.The equivalence of these formulations arises from the observation [4] that if x solves (NE)then �C(x) solves (AVI) and if z solves (AVI), then z+a�Az solves (NE). A path followingmethod was used in [1] to �nd a solution of (NE), based on properties of the normal manifold[11]. The algorithm is a realization of a more general scheme due to Eaves [5], which canbe thought of as a generalization of the pivotal method due to Lemke [9]. Terminationproperties of the algorithm were studied on two matrix classes. One of these was the classof copositive{plus matrices, de�ned as follows.De�nition 1.1. Let K be a given cone. A matrix A is said to be copositive with respect toK if hz;Azi � 0; 8z 2 K:A matrix A is said to be copositive{plus with respect to K if it is copositive with respect toK and hz;Azi = 0; z 2 K =) (A+A>)z = 0:We point out that the property of being copositive{plus is de�ned with respect to a cone.The bigger the cone, the stronger is the assumption of being copositive{plus. For example, apositive semi{de�nite matrix is copositive{plus with respect to IRn, on the other hand, anymatrix in IRn�n is copositive{plus with respect to f0g. The analysis of this paper requiresthat the matrix A be copositive{plus with respect to the recession cone of C.Most of the existing pivotal methods for solving (AVI) depend on the existence of extremepoints in C or certain non{singularity property of A with respect to the lineality of C. Thiscondition usually amounts to W>AW being invertible where W is a basis for linC. Forexample, when A = " 0 1�1 0# ; C = ("xy# : y � 0) ;then a basis for the lineality of C is W = "10# and W>AW = 0, which is not invertible. Inthis paper, we prove that if A is copositive{plus with respect to recC, then we can removethe lineality space in the absence of such a non{singularity assumption. For convenience, werefer to AC(x) as a copositive{plus normal map when the matrix A is copositive{plus withrespect to recC. Our reductions are constructive and hence can be used in an algorithm thatwill construct a solution of an equation determined by a copositive{plus normal map. Inparticular, the algorithm given in [1] will construct a solution or determine that no solutionexists, in this case. The reductions given here could also be used to extend the algorithms forsolving a�ne variational inequalities using path following methods found in [2, 3, 6, 7, 13, 14].A word about our notation. For any vectors x and y in IRn, hx; yi or x>y denotes theinner product of x and y, and in this paper, these two notations are freely interchangeable.Each m�n matrix A represents a linear map from IRn to IRm, the symbol A refers to eitherthe matrix or the linear map as determined by the context. For any vector or matrix, asuperscript > indicates the transpose. Index sets are represented by lower case Greek letters.In particular, for the index set �, j�j denotes the cardinality of �. Given any vector v and anindex set �, v� denotes the set of components of v with indices in �. Given any matrixM andindex sets � and �,M�� denotes the submatrix formed by those rows ofM with indices in �,M�� denotes the submatrix formed by those columns ofM with indices in �, andM�� denotes



3the submatrix formed by those elements ofM with row indices in � and column indices in �.If C is non{empty, closed, convex, recC := fd 2 IRn : c+ �d 2 C;8c 2 C;8� � 0g is calledthe recession cone of C, and linC := recC \� recC. If F is a function from IRn to IRn, thenFC represents the normal mapFC(x) = F (�C(x)) + x� �C(x):The indicator function of a set C is de�ned by C(x) = 8<:0 if x 2 C1 otherwise,and @f is the convex subdi�erential of the convex function f . Further details of our notationcan be found in [12]. 2. Basic Reduction TechniquesIn [1] we gave a pivotal algorithm that will solve any a�ne variational inequality (AVI)determined by a copositive{plus matrix, provided that linC = ;. This algorithm was ex-tended to �nd solutions of equations determined by copositive{plus normal maps for whichW>AW was invertible, whereW represented a basis for linC [1, Corollary 4.5]. The purposeof this paper is to remove the last assumption. We �rst outline some of the reductions thatwere used in [1] since they will be used again here but in a more careful manner.The �rst idea is to change bases so that linC = IRj
j. Suppose that C = fz : Bz � bg.Then linC = kerB, and it is easy to construct an orthonormal basis for kerB using a QRfactorization (see [1]). Let this basis be extended through (linC)? to an orthonormal basisof IRn, say P . It is easy to see thatAC(x) = a () (P>AP )P>C(P>x) = P>a; (1)and that A is copositive{plus with respect to a coneK if and only if P>AP is copositive{pluswith respect to P>K. Furthermore, P>C = IRj
j� �C with lin �C = f0g. Thus we assume forthe remainder of this paper that the above change of variables has occurred and thatA = "A

 A
�A�
 A��# ; a = "a
a�# ; C = (z = "z
z�# : Bz� � b) ; (2)with kerB = f0g. The variables in the lineality are represented by z
 and we assume that
 6= ;.The following elementary results concerning projections onto the lineality of convex setsare easily veri�ed.Lemma 2.1. Let C be a nonempty closed convex set and let L be a subspace of linC. Thenfor any x 2 IRn �C\L?(x) = �C(�L?(x)) = �L?(�C(x))and �L(�C(x)) = �L(x):If QL? is an orthonormal basis of L? thenQ>L?�C(x) = �Q>L?C(Q>L?x):



4 Our second reduction is a simple extension to that given in [11, Proposition 4.1]. It usesthe notion of the Schur complement of a matrix, by which we meanA = "A

 A
�A�
 A��# ; (A=A

) := A�� �A�
A�1

A
�:Proposition 2.2. Let C be a polyhedral set and let L be a subspace of linC. Let QL be anorthonormal basis of L, QL? be an orthonormal basis of L? and Q = [QL QL?]. Supposethat Q>LAQL is invertible. If x solves (NE) then QL?x solves�Q>AQ=Q>LAQL�Q>L?C (y) = Q>L?a�Q>L?AQL(Q>LAQL)�1Q>La: (3)If y solves (3) then Q "(Q>LAQL)�1(Q>La�Q>LAQL?y)y #solves (NE).Proof. Using Lemma 2.1, we see thatAC(x) = a () A�C(x) + x� �C(x) = a() A�L(x) +A�C\L?(x) + x� �L(x)� �C\L?(x) = a() AQL?Q>L?�C(x) + x�QL?Q>L?�C(x) = a+ (I �A)QLQ>Lx:First premultiply the above equation by Q>L . This givesQ>Lx = (Q>LAQL)�1Q>L (a�AQL?Q>L?�C(x)):Substituting for Q>Lx in the above, and premultiplying by Q>L? gives�Q>L?AQL? �Q>L?AQL(Q>LAQL)�1Q>LAQL?�Q>L?�C(x) +Q>L?x�Q>L?�C(x)= Q>L?a�Q>L?AQL(Q>LAQL)�1Q>Lafrom which the �rst statement of the proposition follows using Lemma 2.1.For the second implication, suppose y solves (3). De�new := (Q>LAQL)�1Q>L (a�AQL?�Q>L?C(y)):and note that QLw 2 L. Hence, from Lemma 2.1,�C(Q "wy#) = " QLwQL?�Q>L?C(y)# :The result now follows from elementary algebra.The reduction given in [1] is now immediate from Proposition 2.2 by letting L = linC andthen solving (3) under the assumption that A

 = Q>LAQL is invertible. We now exhibit amore careful reduction that also uses Proposition 2.2. To prove this reduction is valid, we�rst state some technical results.



5Lemma 2.3 ([10, Result 1.6]). Let M be a positive semi-de�nite matrix, and assumeM = "0 u>0 M 0# ;then u = 0.Consequently, we have the following corollary.Corollary 2.4. Let M 2 IRn�n be a positive semi-de�nite matrix, and let
 � f1; 2; � � � ; ng:Assume M�
 = 0, then M
� = 0.Proof. Apply the previous Lemma to each index of 
.We now make a change of variables over linC which transforms the submatrix A

 corre-sponding to the lineality space, into a matrix of the form"D 00 0# ; (4)where D is a positive de�nite matrix.Lemma 2.5. Suppose that A, a and C are de�ned by (2) and that A is copositive withrespect to recC. Then, there exists an orthonormal matrix Q such thatQ>AQ = 264 D 0 A��0 0 A��A�� A�� A��375with D positive de�nite. Furthermore, x solves (NE) if and only if Q>x solves(Q>AQ)Q>C(y) = Q>a:Proof. Since A is copositive with respect to recC it follows thatx>
A

x
 = hx>
 0i "A

 A
�A�
 A��# "x
0 # � 0;for all x
 2 IRj
j. That is, A

 is positive semi{de�nite. Consider a QR factorization of A

A

 = Q

R;where R = "R00 # :Here, R0 is an upper triangular matrix whose row rank equals the rank of A

. By orthonor-mality of Q

, Q>

A

Q

 = D�;where D� = RQ

 . Furthermore D� is of the formD� = "D00 # ;



6with D� positive semi{de�nite, andrankD0 = rankR = rankR0:Thus, D is a matrix in the form of (4) due to Corollary 2.4.Let Q = "Q

 I# ;then Q is orthonormal and the result follows from (1).3. Reductions for Copositive{plus Normal MapsIn this section we show that any invertibility assumption over the lineality space is unnec-essary in the case that A is copositive{plus with respect to recC. The proof of this resultrequires two separate reductions. The �rst, which we gave as Lemma 2.5, allows us to assumethat A = 264 D 0 A��0 0 A��A�� A�� A��375 ; a = 264a�a�a�375 ; C = 8><>:z = 264z�z�z�375 : Bz� � b9>=>; ; (5)with kerB = f0g. It is also clear that if the original matrix was copositive{plus with respectto the recession cone of the original C, then A is copositive{plus with respect to recC asde�ned in (5).It is a crucial part of our analysis to note that the reduction given in Proposition 2.2maintains the copositive{plus property. We state this as the following lemma.Lemma 3.1. Let K be a cone and suppose that L is a linear space contained in K. Let QLbe an orthonormal basis of L, QL? be an orthonormal basis of L? and Q = [QL QL?]. If Ais copositive{plus with respect to K, then �Q>AQ=Q>LAQL� is copositive{plus with respectto Q>L?K.Proof. Note that by the remarks after (1), it is su�cient to prove the result for Q = I, withA being partitioned conformally as A = "A

 A
�A�
 A��# :For any z 2 I��K z> (A=A

) z = z>(A�� �A�
A�1

A
�)z= hw> z>i "A

 A
�A�
 A��# "wz# ;where w = �A�1

A
�z. Thus (w; z) 2 K. Since A is copositive{plus with respect to K, wehave z> (A=A

) z = hw> z>i "A

 A
�A�
 A��# "wz# � 0;so that (A=A

) is copositive with respect to I��K.For any z 2 I��K such that z> (A=A

) z = 0;



7we have hw> z>i "A

 A
�A�
 A��# "wz# = 0;where w = �A�1

A
�z. Hence"A

 A
�A�
 A��# "wz# + "A

 A
�A�
 A��#> "wz# = 0; (6)due to A being copositive{plus with respect to K. In particularA

w +A
�z = 0A>

w +A>�
z = 0A�
w +A��z +A>
�w + A>��z = 0;where the �rst equation is due to the de�nition of w and the second equation follows fromthe �rst and (6). By using the �rst two equations in the third(A�� �A�
A�1

A
�)z + (A�� �A�
A�1

A
�)>z = 0:That is (A=A

) z + (A=A

)> z = 0:Thus (A=A

) is copositive{plus with respect to I��.In the following proposition, we reduce the problem resulting from Lemma 2.5 by elimi-nating the variables associated with the positive de�nite matrix D. The proof relies heavilyon Proposition 2.2 and Lemma 3.1.Proposition 3.2. Suppose A, a and C are given by (5) and that A is copositive{plus withrespect to recC. If x solves (NE), then (x�; x�) solves�A �C(y) = " a�a� �A��D�1a�# ; (7)where �A = " 0 A��A�� A�� �A��D�1A��# ; �C = fz = (z�; z
) : Bz� � bg : (8)If y = (y�; y�) solves (7), then "D�1(a� �A��y�)y #solves (NE). Furthermore, �A is copositive{plus with respect to rec �C.Proof. Let L = IRj�j and apply Proposition 2.2. The �nal statement of the propositionfollows from Lemma 3.1.



8 Thus after this reduction, we may assume that the problem has the formA = " 0 A��A�� A��# ; a = "a�a�# ; C = fz = (z�; z
) : Bz� � bg ; (9)with kerB = f0g and A copositive{plus with respect to recC. However, it follows from thecopositive{plus property that A�� = �A>�� as the following lemma shows.Lemma 3.3. Suppose A = " 0 A��A�� A��#is copositive{plus with respect to IRj�j�K where K is any cone containing the origin. ThenA�� +A>�� = 0.Proof. Take z� 2 IRj�j, z� = 0 and apply the de�nition of copositive{plus to conclude that(A�� +A>��)z� = 0:However, z� is arbitrary.The following result shows that given an equation de�ned by a normal map of the form(9), we are able to reduce it to one whose feasible set has zero lineality.Theorem 3.4. Suppose A, a and C are given byA = " 0 A���A>�� A��# ; a = "a�a�# ; C = fz = (z�; z�) : Bz� � bg :Suppose A is copositive{plus with respect to recC, and de�ne�A := A��; �C := fz� : Bz� � b;A��z� = a�g :If �x solves (NE), then �x� solves �A �C(y) = a�: (10)If �x� solves (10), then there exists �x� such that (�x�; �x�) solves (NE). Moreover, �A is copositive{plus with respect to rec �C.Proof. The �rst implication is easy. For the second implication, notice that �x� satis�es�A �C(y) = a� if and only if �z = � �C(�x�) satis�es�A���z + a� 2 @ �C(�z):Let ~C = fz� : Bz� � bg and note that �C = ~C\fz : A��z = a�g. By reference to [12, Corollary23.8.1] we have �A���z + a� 2 @ ~C(�z) + imA>��;or �A���z + a� +A>���y 2 @ ~C(�z); (11)



9for some �y. Hence �z, together with �y, satis�es�z 2 fz� : Bz� � bgA���z � a� = 0�A���z + a� +A>���y 2 @ ~C(�z);that is (�y; �z) 2 C and � " 0 A���A>�� A��# "�y�z#+ a 2 @ IRj�j � ~C("�y�z#);or �A "�y�z#+ a 2 @ C("�y�z#):Therefore �x := "�y�z#+ a�A "�y�z# (12)solves AC(x) = a.It is obvious that �A is copositive{plus with respect to ~C, and �C � ~C. Hence, �A iscopositive{plus with respect to �C.Theorem 3.4 is actually a variant of the results regarding augmented LCP discussed byEaves in [4] and by Gowda and Pang in [8].Notice that � can be determined easily from a single QR factorization (see (2)) so that�A and �C can be easily formed. Furthermore, the path following algorithm of [1] can beused to solve the reduced problem. The fact that �A is copositive{plus with respect to rec �Cguarantees that this algorithm will process the reduced problem. Given the projection �z ofa solution of �A �C(y) = a�, a solution of (NE) can be constructed from (11) by solving a linearprogram, since (11) is equivalent to�A���z + a� +A>���y = B>u; u � 0;ui = 0 if Bi��z > bi:Thus, �x can be constructed from �z by solving a linear program to obtain �y and using (12).Thus we have the following result.Theorem 3.5. Let A 2 IRn�n and C be a nonempty polyhedral set, such that A is copositive{plus with respect to recC. The algorithm given in [1], applied to (10), solves (NE) ordetermines that no solution exists.Proof. Let C = fz : Bz � bg. First �nd � and 
 by performing a QR factorization todetermine a basis of kerB. Reduce the original problem to form (2). Construct a QRfactorization of the resulting A

 and reduce the problem again so that it has form (5).Factor out the contribution from D and reduce the problem to the form given as (8). Bynoting Lemma 3.3, reduce (8) to the form of (10). (10) is solvable (or demonstrably notsolvable) by the algorithm of [1].
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